Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models

  • Wenmin Chen
  • Wentao FanEmail author
  • Nizar Bouguila
  • Bineng Zhong
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)


In this chapter, we propose an image segmentation method based on a spatially constrained inverted Beta-Liouville (IBL) mixture model for segmenting medical images. Our method adopts the IBL distribution as the basic distribution, which can demonstrate better performance than commonly used distributions (such as Gaussian distribution) in image segmentation. To improve the robustness of our image segmentation method against noise, the spatial relationship among nearby pixels is imposed into our model by using generalized means. We develop a variational Bayes inference algorithm to learn the proposed model, such that model parameters can be efficiently estimated in closed form. In our experiments, we use both simulated and real brain magnetic resonance imaging (MRI) data to validate our model.


Medical image segmentation Inverted Beta-Liouville Spatially constrained model Mixture models Variational inference 



The completion of this work was supported by the National Natural Science Foundation of China (61876068, 61572205), the Natural Science Foundation of Fujian Province (2018J01094), and the Promotion Program for young and middle-aged teacher in Science and Technology Research of Huaqiao University (ZQNPY510).


  1. 1.
    Huang, X., Tsechpenakis, G.: Medical image segmentation. Inf. Discov. Electron. Health Rec. 10, 251–289 (2009)Google Scholar
  2. 2.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 878–885 (2005)Google Scholar
  3. 3.
    Samaria, F., Young, S.: Hmm-based architecture for face identification. Image Vis. Comput. 12(8), 537–543 (1994)CrossRefGoogle Scholar
  4. 4.
    Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(2000), 315–337 (2000)CrossRefGoogle Scholar
  5. 5.
    Kalpathy-Cramer, J., Hersh, W.: Medical image retrieval and automatic annotation: OHSU at ImageCLEF 2007. In: Advances in Multilingual and Multimodal Information Retrieval, pp. 623–630 (2008)Google Scholar
  6. 6.
    Fabijańska, A.: Variance filter for edge detection and edge-based image segmentation. In: Viith International Conference on Perspective Technologies and Methods in Mems Design (2011)Google Scholar
  7. 7.
    Silva, L., Bellon, O.R.P., Gotardo, P.F.U.: Edge-based image segmentation using curvature sign maps from reflectance and range images. In: International Conference on Image Processing (2001)Google Scholar
  8. 8.
    Adamek, T., O’Connor, N.E.: Stopping region-based image segmentation at meaningful partitions. In: Semantic and Digital Media Technologies International Conference on Semantic Multimedia (2007)Google Scholar
  9. 9.
    Fauqueur, J., Boujemaa, N.: Region-based image retrieval: fast coarse segmentation and fine color description. J. Vis. Lang. Comput. 15(1), 69–95 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Monteiro, F.C., Campilho, A.: Watershed framework to region-based image segmentation. In: International Conference on Pattern Recognition (2008)Google Scholar
  11. 11.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  12. 12.
    Zabih, R., Kolmogorov, V.: Spatially coherent clustering using graph cuts. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  13. 13.
    Mei, Y.C., Wei, L.K., Wei, Y.K., Angeline, L., Teo, K.T.K.: Graph-based image segmentation using k-means clustering and normalised cuts. In: Fourth International Conference on Computational Intelligence (2012)Google Scholar
  14. 14.
    Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy -means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40(3), 825–838 (2007)zbMATHCrossRefGoogle Scholar
  15. 15.
    Flury, B.: Algorithms for clustering data: Anil K. Jain and Richard C. Dubes Prentice Hall advanced reference series in computer science Prentice Hall, Englewood cliffs, NJ (1988). J. Stat. Plan. Inference 21(1), 137–138 (1989)Google Scholar
  16. 16.
    Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005)CrossRefGoogle Scholar
  17. 17.
    Nikou, C., Likas, A.C., Galatsanos, N.P.: A bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nguyen, T.M., Wu, Q.M.J.: Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23(4), 621–635 (2013)CrossRefGoogle Scholar
  19. 19.
    Nguyen, T.M., Wu, Q.M.J.: Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans. Syst. Man Cybern. B Cybern. 42(1), 193–202 (2012)CrossRefGoogle Scholar
  20. 20.
    Fan, W., Sallay, H., Bouguila, N.: Online learning of hierarchical Pitman–Yor process mixture of generalized Dirichlet distributions with feature selection. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2048–2061 (2017)MathSciNetGoogle Scholar
  21. 21.
    Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture models and applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762–774 (2012)CrossRefGoogle Scholar
  22. 22.
    Bdiri, T., Bouguila, N.: Positive vectors clustering using inverted Dirichlet finite mixture models. Expert Syst. Appl. 39(2), 1869–1882 (2012)CrossRefGoogle Scholar
  23. 23.
    Bdiri, T., Bouguila, N.: Bayesian learning of inverted Dirichlet mixtures for SVM kernels generation. Neural Comput. Appl. 23(5), 1443–1458 (2013)CrossRefGoogle Scholar
  24. 24.
    Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. 49, 19–42 (2016)CrossRefGoogle Scholar
  25. 25.
    Mashrgy, M.A., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted Dirichlet mixture models. Knowl. Based Syst. 59, 182–195 (2014)CrossRefGoogle Scholar
  26. 26.
    Bdiri, T., Bouguila, N., Ziou, D.: Variational bayesian inference for infinite generalized inverted Dirichlet mixtures with feature selection and its application to clustering. Appl. Intell. 44(3), 507–525 (2016)CrossRefGoogle Scholar
  27. 27.
    Fan, W., Bouguila, N., Liu, X.: A hierarchical Dirichlet process mixture of GID distributions with feature selection for spatio-temporal video modeling and segmentation. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, pp. 2771–2775 (2017)Google Scholar
  28. 28.
    Fan, W., Bouguila, N.: Online learning of a Dirichlet process mixture of Beta-Liouville distributions via variational inference. IEEE Trans. Neural Netw. Learn. Syst. 24(11), 1850–1862 (2013)CrossRefGoogle Scholar
  29. 29.
    Fan, W., Bouguila, N.: Expectation propagation learning of a Dirichlet process mixture of Beta-Liouville distributions for proportional data clustering. Eng. Appl. Artif. Intell. 43, 1–14 (2015)CrossRefGoogle Scholar
  30. 30.
    Hu, C., Fan, W., Du, J., Zeng, Y.: Model-based segmentation of image data using spatially constrained mixture models. Neurocomputing 283, 214–227 (2018)CrossRefGoogle Scholar
  31. 31.
    Fan, W., Hu, C., Du, J., Bouguila, N.: A novel model-based approach for medical image segmentation using spatially constrained inverted Dirichlet mixture models. Neural Process. Lett. 47(2), 619–639 (2018)Google Scholar
  32. 32.
    Hu, C., Fan, W., Du, J.X., Nan, X.: Spatially variant mixture model for natural image segmentation. J. Electron. Imaging 26(4), 043005 (2017)CrossRefGoogle Scholar
  33. 33.
    Hu, C., Fan, W., Du, J., Bouguila, N.: A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models. Neurocomputing 333, 110–123 (2019)CrossRefGoogle Scholar
  34. 34.
    Hui, Z., Wu, Q.M.J., Nguyen, T.M.: Image segmentation by Dirichlet process mixture model with generalised mean. Iet Image Process. 8(2), 103–111 (2013)Google Scholar
  35. 35.
    Attias, H.: A variational Bayes framework for graphical models. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 209–215 (1999)Google Scholar
  36. 36.
    Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for graphical models. Mach. Learn. 37, 183–233 (1999)zbMATHCrossRefGoogle Scholar
  37. 37.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  38. 38.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, London (2009)zbMATHGoogle Scholar
  39. 39.
    Zhu, Y., Fujimura, K.: Driver face tracking using Gaussian mixture model(gmm). In: IEEE Intelligent Vehicles Symposium (2003)Google Scholar
  40. 40.
    Nguyen, T.M., Wu, Q.M.J.: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans. Med. Imaging 31(1), 103–116 (2012)CrossRefGoogle Scholar
  41. 41.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2002)CrossRefGoogle Scholar
  42. 42.
    Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Pike, G.B., Evans, A.C.: Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 5, 425 (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wenmin Chen
    • 1
  • Wentao Fan
    • 1
    Email author
  • Nizar Bouguila
    • 2
  • Bineng Zhong
    • 1
  1. 1.Department of Computer Science and TechnologyHuaqiao UniversityXiamenChina
  2. 2.Concordia Institute for Information Systems EngineeringConcordia UniversityMontrealCanada

Personalised recommendations