Color Image Segmentation Using Semi-bounded Finite Mixture Models by Incorporating Mean Templates

  • Jaspreet Singh KalsiEmail author
  • Muhammad Azam
  • Nizar Bouguila
Part of the Unsupervised and Semi-Supervised Learning book series (UNSESUL)


Finite mixture models (FMM) are very popular for image segmentation. But, FMM assumes that each pixel is independent from each other. Thus, it does not consider the spatial information of the pixels which makes FMM more sensitive to noise. Generally, the traditional FMM consists of prior probability (PP) and component conditional probability (CP). In this chapter, we have incorporated mean templates, namely weighted geometric mean template (WGMT) and weighted arithmetic mean template (WAMT) to compute the CP. For estimating PP, the weighted geometric mean prior probability (WGMPP) and weighted arithmetic mean prior probability (WAMPP) templates are used. Lastly, the Expectation-Maximization (EM) algorithm is used to estimate the hyper-parameters of the FMM. Our models are proposed based on inverted Dirichlet (ID), generalized inverted Dirichlet (GID), and inverted Beta-Liouville (IBL) mixture models using the mean templates. For experimentation, the Berkeley 500 (BSD500) and MIT’s Computational Visual Cognition Laboratory (CVCL) datasets are used. We have also employed eight image segmentation performance evaluation metrics such as adjusted Rand index and homogeneity score to validate the image segmentation results for the BSD500. Additionally, we have also compared the segmentation outputs for the CVCL dataset which are computed using the traditional RGB and l1l2l3 color spaces. The results obtained from IBL mixture models (IBLMM) are more promising than ID mixture models (IDMM) and GID mixture models (GIDMM).


Inverted Dirichlet distribution Generalized inverted Dirichlet Inverted Beta-Liouville Image segmentation Spatial information 


  1. 1.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)CrossRefGoogle Scholar
  2. 2.
    Fabijańska, A., Gocławski, J.: The segmentation of 3D images using the random walking technique on a randomly created image adjacency graph. IEEE Trans. Image Process. 24(2), 524–537 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  4. 4.
    Li, C., Kao, C., Gore, J.C., et al.: Implicit active contours driven by local binary fitting energy. In: Anonymous 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Piscataway, pp. 1–7 (2007)Google Scholar
  5. 5.
    Li, C., Xu, C., Gui, C., et al.: Level set evolution without re-initialization: a new variational formulation. In: Anonymous 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 430–436. IEEE, Piscataway (2005)Google Scholar
  6. 6.
    Ren, Z.: Adaptive active contour model driven by fractional order fitting energy. Signal Process. 117, 138–150 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Shan, J., Niu, Y., et al.: Enhanced distance regularization for re-initialization free level set evolution with application to image segmentation. Neurocomputing 141, 223–235 (2014)CrossRefGoogle Scholar
  8. 8.
    Wu, J., Zhao, Y., Zhu, J., et al.: Milcut: a sweeping line multiple instance learning paradigm for interactive image segmentation. In: Anonymous Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 256–263 (2014)Google Scholar
  9. 9.
    Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28, 668–676 (2010)CrossRefGoogle Scholar
  10. 10.
    Han, B., Wu, Y.: A novel active contour model based on modified symmetric cross entropy for remote sensing river image segmentation. Pattern Recogn. 67, 396–409 (2017)CrossRefGoogle Scholar
  11. 11.
    Chen, Y.-T.: A novel approach to segmentation and measurement of medical image using level set methods. Magn. Reson. Imaging 39, 175–193 (2017)CrossRefGoogle Scholar
  12. 12.
    Feng, C., Zhao, D., Huang, M.: Image segmentation and bias correction using local inhomogeneous intensity clustering (LINC): a region-based level set method. Neurocomputing 219, 107–129 (2017)CrossRefGoogle Scholar
  13. 13.
    Liu, G., Zhang, Y., Wang, A.: Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans. Image Process. 24, 3990–4000 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, G., Chen, X., Shi, F., et al.: Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Trans. Image Process. 24, 5315–5329 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dai, S., Lu, K., Dong, J., et al.: A novel approach of lung segmentation on chest CT images using graph cuts. Neurocomputing 168, 799–807 (2015)CrossRefGoogle Scholar
  16. 16.
    Ji, Z., Xia, Y., Sun, Q., et al.: Fuzzy local Gaussian mixture model for brain MR image segmentation. IEEE Trans. Inf. Technol. Biomed. 16, 339–347 (2012)CrossRefGoogle Scholar
  17. 17.
    Boudaren, M.E.Y., An, L., Pieczynski, W.: Unsupervised segmentation of SAR images using Gaussian mixture-hidden evidential Markov fields. IEEE Geosci. Remote Sens. Lett. 13, 1865–1869 (2016)CrossRefGoogle Scholar
  18. 18.
    Xia, Y., Ji, Z., Zhang, Y.: Brain MRI image segmentation based on learning local variational Gaussian mixture models. Neurocomputing 204, 189–197 (2016)CrossRefGoogle Scholar
  19. 19.
    Nguyen, T.M., Wu, Q.M.J.: Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23, 621–635 (2013)CrossRefGoogle Scholar
  20. 20.
    Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64, 16–27 (2017)CrossRefGoogle Scholar
  21. 21.
    Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Auto-context convolutional neural network (Auto-Net) for brain extraction in magnetic resonance imaging. IEEE Trans. Med. Imaging 36, 2319–2330 (2017)CrossRefGoogle Scholar
  22. 22.
    Duan, Y., Liu, F., Jiao, L., et al.: SAR image segmentation based on convolutional-wavelet neural network and Markov random field. Pattern Recogn. 64, 255–267 (2017)CrossRefGoogle Scholar
  23. 23.
    Sefidpour, A., Bouguila, N.: Spatial color image segmentation based on finite non-Gaussian mixture models. Expert Syst. Appl. 39(10), 8993–9001 (2012)CrossRefGoogle Scholar
  24. 24.
    Bdiri, T., Bouguila, N., Ziou, D.: Variational Bayesian inference for infinite generalized inverted Dirichlet mixtures with feature selection and its application to clustering. Appl. Intell. 44(3), 507–525 (2016)CrossRefGoogle Scholar
  25. 25.
    Bdiri, T., Bouguila, N., Ziou, D.: Visual scenes categorization using a flexible hierarchical mixture model supporting users ontology. In: Anonymous 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 262–267 (2013)Google Scholar
  26. 26.
    Al Mashrgy, M., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted Dirichlet mixture models. Knowl. Based Syst. 59, 182–195 (2014)CrossRefGoogle Scholar
  27. 27.
    Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. 49, 19–42 (2016)CrossRefGoogle Scholar
  28. 28.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  29. 29.
    Alush, A., Goldberger, J.: Hierarchical image segmentation using correlation clustering. IEEE Trans. Neural Netw. Learn. Syst. 27, 1358–1367 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2000)Google Scholar
  31. 31.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26, 1277–1294 (1993)CrossRefGoogle Scholar
  32. 32.
    McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)CrossRefGoogle Scholar
  33. 33.
    Bouguila, N.: Spatial color image databases summarization. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 1, pp. I-953–I-956. IEEE, Piscataway (2007)Google Scholar
  34. 34.
    Bouguila, N.: Count data modeling and classification using finite mixtures of distributions. IEEE Trans. Neural Netw. 22(2), 186–198 (2011)CrossRefGoogle Scholar
  35. 35.
    Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture models and applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762–774 (2012)CrossRefGoogle Scholar
  36. 36.
    Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1177–1193 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  38. 38.
    Panahi, R., Gholampour, I.: Accurate detection and recognition of dirty vehicle plate numbers for high-speed applications. IEEE Trans. Intell. Transp. Syst. 18(4), 767–779 (2017)CrossRefGoogle Scholar
  39. 39.
    Cheng, M., Mitra, N.J., Huang, X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)CrossRefGoogle Scholar
  40. 40.
    Chen, L., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  41. 41.
    Hershkovitch, T., Riklin-Raviv, T.: Model-dependent uncertainty estimation of medical image segmentation. In: Anonymous 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1373–1376 (2018)Google Scholar
  42. 42.
    Price, S.R., Price, S.R., Price, C.D., et al.: Pre-screener for automatic detection of road damage in SAR imagery via advanced image processing techniques. In: Anonymous Pattern Recognition and Tracking XXIX, vol. 10649, pp. 1064913. International Society for Optics and Photonics, Bellingham (2018)Google Scholar
  43. 43.
    Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)CrossRefGoogle Scholar
  44. 44.
    Zhang, H., Wu, Q.J., Nguyen, T.M.: Incorporating mean template into finite mixture model for image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 328–335 (2013)CrossRefGoogle Scholar
  45. 45.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  46. 46.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  47. 47.
    Martin, D., Fowlkes, C., Tal, D., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Anonymous. ICCV, Vancouver (2001)Google Scholar
  48. 48.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefGoogle Scholar
  49. 49.
    Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)CrossRefGoogle Scholar
  50. 50.
    Tiao, G.G., Cuttman, I.: The inverted Dirichlet distribution with applications. J. Am. Stat. Assoc. 60(311), 793–805 (1965)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Graybill, F.A.: Matrices with Applications in Statistics. Wadsworth, Belmont (1983)zbMATHGoogle Scholar
  52. 52.
    Bdiri, T., Bouguila, N.: Positive vectors clustering using inverted Dirichlet finite mixture models. Expert Syst. Appl. 39(2), 1869–1882 (2012)CrossRefGoogle Scholar
  53. 53.
    Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. 49, 19–42 (2016)CrossRefGoogle Scholar
  54. 54.
    Fang, K.: Symmetric multivariate and related distributions. Chapman and Hall/CRC, New York (1990)CrossRefGoogle Scholar
  55. 55.
    Hu, C., Fan, W., Du, J., et al.: A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models. Neurocomputing 333, 110–123 (2019)CrossRefGoogle Scholar
  56. 56.
    Strehl, A., Joydeep, G.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison. In: Proceedings of the 26th Annual International Conference on Machine Learning – ICML (2009)Google Scholar
  58. 58.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837 (2010)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)CrossRefGoogle Scholar
  60. 60.
    Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 410–420 (2007)Google Scholar
  61. 61.
    Becker, H.: Identification and Characterization of Events in Social Media, PhD Thesis (2011)Google Scholar
  62. 62.
    Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1–27 (1974)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)Google Scholar
  64. 64.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579 (1901)Google Scholar
  65. 65.
    Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)CrossRefGoogle Scholar
  66. 66.
    Gevers, T., Smeulders, A.W.: Color-based object recognition. Pattern Recogn. 32(3), 453–464 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jaspreet Singh Kalsi
    • 1
    Email author
  • Muhammad Azam
    • 1
  • Nizar Bouguila
    • 2
  1. 1.Department of Electrical and Computer Engineering (ECE)Concordia UniversityMontrealCanada
  2. 2.Concordia Institute for Information Systems EngineeringConcordia UniversityMontrealCanada

Personalised recommendations