A Parallel Implementation for Cellular Potts Model with Software Transactional Memory

  • A. J. Tomeu
  • A. Gámez
  • A. G. SalgueroEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1005)


Cellular Potts Model is a mathematical model used to simulate biological systems in a wide scale range, from cells to organs. The model uses a Monte-Carlo approach to determinate for each cell, new state and actions like mitosis, movements or emission of pseudopods. Literature shows multiple implementations of CPM model, even incorporating parallel processing. These works use a data division approach that requires to take locks on data structures, or to spread information between tasks, slowing down simulations. This work proposes a fast implementation for CPM using software transactional memory to synchronize parallel tasks and to apply it to breast cancer in situ (DCIS). Execution times and speedups are calculated. Results show appreciable speedups.


Cellular automaton Cellular Potts Model (Breast cancer in situ) DCIS Gland Locks Multicore Parallel programming Shared memory Software transactional memory speedup 


  1. 1.
    Altrock, P., Liu, L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015)CrossRefGoogle Scholar
  2. 2.
    Byrne, H.: Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10, 221–230 (2010)CrossRefGoogle Scholar
  3. 3.
    Chen, N., et al.: A parallel implementation of the Cellular Potts Model for simulation of cell-based morphogenesis. Comput. Phys. Commun. 176(11–12), 670–681 (2007)CrossRefGoogle Scholar
  4. 4.
    Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkhäuser, Boston (2005)zbMATHGoogle Scholar
  5. 5.
    Enderling, H., Chaplain, M., Anderson, A., Vaidya, J.: A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Erbas, B., Provenzano, E., Armes, J., Gertig, D.: The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res. Treat. 97(2), 135–144 (2006)CrossRefGoogle Scholar
  7. 7.
    Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRefGoogle Scholar
  8. 8.
    Gevertz, J., Gillies, G., Torquato, S.: Simulating tumor growth in confined heterogeneous environments. Phys. Biol. 5(3) (2008)CrossRefGoogle Scholar
  9. 9.
    Giordano, A., et al.: Parallel execution of cellular automata through space partitioning: the landslide simulation Sciddicas3-Hex case study. In: Proceedings of 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 505–510 (2017)Google Scholar
  10. 10.
    Kang, S., et al.: Biocellion: accelerating computer simulation of multicellular biological systems models. Bioinformatics 30(21), 3101–3108 (2014)CrossRefGoogle Scholar
  11. 11.
    Kam, Y., Rejniak, K., Anderson, A.: Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J. Cell. Physiol. 227(2), 431–438 (2012)CrossRefGoogle Scholar
  12. 12.
    Monteagudo, A., Santos, J.: Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context. Biosystems 115, 46–58 (2014)CrossRefGoogle Scholar
  13. 13.
    Kumar, P.: Manual of Practical Pathology. CBS Publisher & Distributors P Ltd. (2011)Google Scholar
  14. 14.
    Norton, K., Wininger, M., Bhanot, G., Ganesan, S., Barnardh, N., Shinbrotb, T.: A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J. Theor. Biol. 263(4), 393–406 (2009)CrossRefGoogle Scholar
  15. 15.
    Salguero, A., Capel, M., Tomeu, A.: Parallel cellular automaton tumor growth model. Advances in Intelligent Systems and Computing (AISC), vol. 803 (2018). Scholar
  16. 16.
    Scianna, M., Preziosi, L.: Cellular Potts Models: Multiscale Extensions and Biological Applications. Mathematical and Computational Biology Series. Chapman & Hall/CRC, Boca Raton (2013)CrossRefGoogle Scholar
  17. 17.
    Tomeu, A.J., Salguero, A.G., Capel, M.: Speeding up tumor growth simulations using parallel programming and cellular automata. IEEE Lat. Am. Trans. 14(11), 4603–4619 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CádizPuerto RealSpain
  2. 2.IES Mar MediterráneoAguadulceSpain

Personalised recommendations