Advertisement

Troppo - A Python Framework for the Reconstruction of Context-Specific Metabolic Models

  • Jorge FerreiraEmail author
  • Vítor Vieira
  • Jorge Gomes
  • Sara Correia
  • Miguel Rocha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1005)

Abstract

The surge in high-throughput technology availability for molecular biology has enabled the development of powerful predictive tools for use in many applications, including (but not limited to) the diagnosis and treatment of human diseases such as cancer. Genome-scale metabolic models have shown some promise in clearing a path towards precise and personalized medicine, although some challenges still persist. The integration of omics data and subsequent creation of context-specific models for specific cells/tissues still poses a significant hurdle, and most current tools for this purpose have been implemented using proprietary software. Here, we present a new software tool developed in Python, troppo - Tissue-specific RecOnstruction and Phenotype Prediction using Omics data, implementing a large variety of context-specific reconstruction algorithms. Our framework and workflow are modular, which facilitates the development of newer algorithms or omics data sources.

Keywords

Context-specific model reconstruction Tissue specific models Genome-scale metabolic models Omics data integration 

Notes

Acknowledgements

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also thank the PhD scholarships funded by national funds through Fundação para a Ciência e Tecnologia, with references: SFRH/BD/133248/2017 (J.F.), SFRH/BD/118657/2016 (V.V.).

References

  1. 1.
    Agren, R., Bordel, S., Mardinoglu, A., et al.: Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8(5), e1002518 (2012).  https://doi.org/10.1371/journal.pcbi.1002518CrossRefGoogle Scholar
  2. 2.
    Agren, R., Mardinoglu, A., Asplund, A., et al.: Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. (2014).  https://doi.org/10.1002/msb.145122CrossRefGoogle Scholar
  3. 3.
    Becker, S.A., Palsson, B.O.: Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4(5), e1000082 (2008).  https://doi.org/10.1371/journal.pcbi.1000082MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bordbar, A., Mo, M.L., Nakayasu, E.S., et al.: Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. (2012).  https://doi.org/10.1038/msb.2012.21CrossRefGoogle Scholar
  5. 5.
    Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O.: Constraint-based models predict metabolic and associated cellular functions (2014).  https://doi.org/10.1038/nrg3643CrossRefGoogle Scholar
  6. 6.
    Brunk, E., Sahoo, S., Zielinski, D.C., et al.: Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36(3), 272–281 (2018).  https://doi.org/10.1038/nbt.4072CrossRefGoogle Scholar
  7. 7.
    Correia, S., Costa, B., Rocha, M.: Reconstruction of consensus tissue-specific metabolic models. bioRxiv (2018).  https://doi.org/10.1101/327262
  8. 8.
    Duarte, N.C., Becker, S.A., Jamshidi, N., et al.: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Nat. Acad. Sci. USA 104(6), 1777–82 (2007).  https://doi.org/10.1073/pnas.0610772104CrossRefGoogle Scholar
  9. 9.
    Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: COBRApy: constraints-based reconstruction and analysis for Python. BMC Syst. Biol. (2013).  https://doi.org/10.1186/1752-0509-7-74CrossRefGoogle Scholar
  10. 10.
    Heirendt, L., Arreckx, S., Pfau, T., et al.: Creation and analysis of biochemical constraint-based models: the COBRA toolbox v3.0. Protocol Exchange (2017).  https://doi.org/10.1038/protex.2011.234
  11. 11.
    Jensen, K., G.R. Cardoso, J., Sonnenschein, N.: Optlang: an algebraic modeling language for mathematical optimization. J. Open Sour. Softw. (2017).  https://doi.org/10.21105/joss.00139CrossRefGoogle Scholar
  12. 12.
    Jerby, L., Shlomi, T., Ruppin, E.: Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).  https://doi.org/10.1038/msb.2010.56CrossRefGoogle Scholar
  13. 13.
    Ma, H., Sorokin, A., Mazein, A., et al.: The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3(1), 135 (2007).  https://doi.org/10.1038/msb4100177CrossRefGoogle Scholar
  14. 14.
    Raškevičius, V., Mikalayeva, V., Antanavičičtūė, I., et al.: Genome scale metabolic models as tools for drug design and personalized medicine. PLOS ONE 13(1), e0190636 (2018).  https://doi.org/10.1371/journal.pone.0190636CrossRefGoogle Scholar
  15. 15.
    Robaina Estévez, S., Nikoloski, Z.: Generalized framework for context-specific metabolic model extraction methods. Front. Plant Sci. 5, 491 (2014).  https://doi.org/10.3389/fpls.2014.00491CrossRefGoogle Scholar
  16. 16.
    Ryu, J.Y., Kim, H.U., Lee, S.Y.: Reconstruction of genome-scale human metabolic models using omics data. Integr. Biol. (2015).  https://doi.org/10.1039/C5IB00002ECrossRefGoogle Scholar
  17. 17.
    Schmidt, B.J., Ebrahim, A., Metz, T.O., et al.: GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics 29(22), 2900–8 (2013).  https://doi.org/10.1093/bioinformatics/btt493. (Oxford, England)CrossRefGoogle Scholar
  18. 18.
    Schultz, A., Qutub, A.A.: Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput. Biol. (2016).  https://doi.org/10.1371/journal.pcbi.1004808CrossRefGoogle Scholar
  19. 19.
    Uhlen, M., Oksvold, P., Fagerberg, L., et al.: Towards a knowledge-based human protein Atlas. Nat. Biotechnol. (2010).  https://doi.org/10.1038/nbt1210-1248CrossRefGoogle Scholar
  20. 20.
    Vlassis, N., Pacheco, M.P., Sauter, T.: Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10(1), e1003424 (2014).  https://doi.org/10.1371/journal.pcbi.1003424CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Eddy, J.A., Price, N.D.: Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. (2012).  https://doi.org/10.1186/1752-0509-6-153CrossRefGoogle Scholar
  22. 22.
    Yates, B., Bruford, E., Gray, K., et al.: Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Res. 47(D1), D786–D792 (2018).  https://doi.org/10.1093/nar/gky930CrossRefGoogle Scholar
  23. 23.
    Zur, H., Ruppin, E., Shlomi, T.: iMAT: an integrative metabolic analysis tool. Bioinformatics (2010).  https://doi.org/10.1093/bioinformatics/btq602CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre of Biological Engineering, Campus de GualtarUniversity of MinhoBragaPortugal

Personalised recommendations