Advertisement

Signaling Transduction Networks in Choroidal Melanoma: A Symbolic Model Approach

  • Beatriz Santos-BuitragoEmail author
  • Emiliano Hernández-Galilea
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1005)

Abstract

Biochemical reactions that take place concurrently in a cell can be explored and analyzed by symbolic systems biology. These cellular processes can be modeled with symbolic mathematical models through the use of rewrite rules. Our goal is to define formal models that capture biologists intuitions and reasoning. Pathway Logic is a system for developing executable formal models of biomolecular processes. Analyses of biological facts can be obtained from such models. Ocular melanoma is the most frequent malignant primary intraocular tumor in adult population and the second most common site of malignant melanoma in the body. The knowledge of the signaling pathways involved in melanoma offers new treatment strategies. In this paper, we provide a symbolic system that explores complex and dynamic cellular signaling processes that induce cellular proliferation and survival in choroidal melanoma.

Keywords

Symbolic systems biology Choroidal melanoma Signal transduction Rewriting logic Pathway Logic 

References

  1. 1.
    Calipel, A., Lefevre, G., Pouponnot, C., Mouriaux, F.: Mutation of B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the MEK/ERK pathway. J. Biol. Chem. 278(43), 42409–42418 (2003)CrossRefGoogle Scholar
  2. 2.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic, LNCS, vol. 4350. Springer (2007)Google Scholar
  3. 3.
    Delmas, C., Aragou, N., Poussard, S., Cottin, P., Darbon, J.M., Manenti, S.: MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells requirement of p27Kip1 nuclear export. J. Biol. Chem. 278(14), 12443–12451 (2003)CrossRefGoogle Scholar
  4. 4.
    Hecquet, C., Lefevre, G., Valtink, M., Engelmann, K., Mascarelli, F.: cAMP inhibits the proliferation of retinal pigmented epithelial cells through the inhibition of ERK1/2 in a PKA-independent manner. Oncogene 21(39), 6101 (2002)CrossRefGoogle Scholar
  5. 5.
    Hwang, W., Hwang, Y., Lee, S., Lee, D.: Rule-based multi-scale simulation for drug effect pathway analysis. BMC Med. Inform. Decis. Mak. 13(Suppl. 1), S4 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Krantz, B.A., Dave, N., Komatsubara, K.M., Marr, B.P., Carvajal, R.D.: Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin. Ophthalmol. 11, 279 (2017)CrossRefGoogle Scholar
  7. 7.
    Lefevre, G., Calipel, A., Mouriaux, F., Hecquet, C.: Opposite long-term regulation of c-Myc and p27\(^{Kip1}\) through overactivation of Raf-1 and the MEK/ERK module in proliferating human choroidal melanoma cells. Oncogene 22(55), 8813 (2003)CrossRefGoogle Scholar
  8. 8.
    Lo, J.A., Fisher, D.E.: The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science 346(6212), 945–949 (2014)CrossRefGoogle Scholar
  9. 9.
    Manenti, S., Malecaze, F., Darbon, J.M.: The major myristoylated PKC substrate (MARCKS) is involved in cell spreading, tyrosine phosphorylation of paxillin, and focal contact formation. FEBS Lett. 419(1), 95–98 (1997)CrossRefGoogle Scholar
  10. 10.
    Martí-Oliet, N., Ölveczky, P.C., Talcott, C.L. (eds.): Logic, Rewriting, and Concurrency - Essays Dedicated to José Meseguer on the Occasion of his 65th Birthday. LNCS, vol. 9200. Springer, Heidelberg (2015)zbMATHGoogle Scholar
  11. 11.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nieto, C., Escudero, F., Rivero, V., Hernández Galilea, E.: Choroidal metastasis from primary bone leiomyosarcoma. Int. Ophthalmol. 35(5), 721–725 (2015)CrossRefGoogle Scholar
  13. 13.
    Patel, M., Smyth, E., Chapman, P.B., Wolchok, J.D., Schwartz, G.K., Abramson, D.H., Carvajal, R.D.: Therapeutic implications of the emerging molecular biology of uveal melanoma. Clin. Cancer Res. 17(8), 2087–2100 (2011)CrossRefGoogle Scholar
  14. 14.
    Riesco, A., Santos-Buitrago, B., De Las Rivas, J., Knapp, M., Santos-García, G., Talcott, C.: Epidermal growth factor signaling towards proliferation: modeling and logic inference using forward and backward search. Biomed. Res. Int. 2017, 11 (2017)CrossRefGoogle Scholar
  15. 15.
    Santos-Buitrago, B., Riesco, A., Knapp, M., Alcantud, J.C.R., Santos-García, G., Talcott, C.: Soft set theory for decision making in computational biology under incomplete information. IEEE Access 7, 18183–18193 (2019)CrossRefGoogle Scholar
  16. 16.
    Santos-García, G., De Las Rivas, J., Talcott, C.L.: A logic computational framework to query dynamics on complex biological pathways. In: Saez-Rodriguez, J., et al. (eds.) 8th International Conference on Practical Applications of Computational Biology & Bioinformatics, PACBB 2014, 4–6 June 2014, Salamanca, Spain. AISC, vol. 294, pp. 207–214. Springer, Cham (2014)Google Scholar
  17. 17.
    Santos-García, G., Palomino, M., Verdejo, A.: Rewriting logic using strategies for neural networks: an implementation in Maude. In: Corchado, J.M., et al. (eds.) Proceedings of International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2008, Salamanca, Spain, 22–24 October 2008. AISC, vol. 50, pp. 424–433. Springer, Berlin (2009)Google Scholar
  18. 18.
    Santos-García, G., Talcott, C.L., De Las Rivas, J.: Analysis of cellular proliferation and survival signaling by using two ligand/receptor systems modeled by Pathway Logic. In: Abate, A., Safránek, D., (eds.) Hybrid Systems Biology - Fourth International Workshop, HSB 2015, Madrid, Spain, 4–5 September 2015. Revised Selected Papers. LNCS, vol. 9271, pp. 226–245. Springer, Cham (2015)Google Scholar
  19. 19.
    Shtivelman, E., Davies, M.A., Hwu, P., Yang, J., Lotem, M., Oren, M.: Pathways and therapeutic targets in melanoma. Oncotarget 5(7), 1701 (2014)CrossRefGoogle Scholar
  20. 20.
    Talcott, C.L.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G., (eds.) SFM. LNCS, vol. 5016, pp. 21–53. Springer (2008)Google Scholar
  21. 21.
    Tenazinha, N., Vinga, S.: A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(4), 943–958 (2011)CrossRefGoogle Scholar
  22. 22.
    Weng, G., Bhalla, U.S., Iyengar, R.: Complexity in biological signaling systems. Science 284(5411), 92–96 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Beatriz Santos-Buitrago
    • 1
    Email author
  • Emiliano Hernández-Galilea
    • 2
    • 3
  1. 1.Bio and Health Informatics LabSeoul National UniversitySeoulSouth Korea
  2. 2.Department of OphthalmologyUniversity Hospital of SalamancaSalamancaSpain
  3. 3.Institute for Biomedical Research Salamanca (IBSAL)SalamancaSpain

Personalised recommendations