Skip to main content

Cohesive Zone Models—Theory, Numerics and Usage in High-Temperature Applications to Describe Cracking and Delamination

  • Chapter
  • First Online:
Advances in Mechanics of High-Temperature Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 117))

Abstract

This treatise deals with Cohesive Zone Models which were developed around 1960 through Barenblatt and Dugdale. At first, we present an overview about these models and the numerical treatment of these models in the sense of the Finite Element Method. Further on, a rate-dependent Cohesive Zone Model is presented and tested through a simulation of a Four-Point-Bend-Test with a metal compound. The required material parameters are determined through numerical optimisation by using a neural network which is explained, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papazafeiropoulos, G., Muñiz-Calvente, M., Martínez-Pañeda, E.: Adv. Eng. Softw. 105, 9 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.006

    Article  Google Scholar 

  2. Altenbach, H.: Kontinuumsmechanik: Einführung in die materialunabhängigen und materialabhängigen Gleichungen, 4th edn. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-57504-8

    Book  Google Scholar 

  3. Lai, W., Rubin, D., Krempl, E.: Introduction to Continuum Mechanics, 4th edn. Butterworth-Heinemann, Oxford (2009)

    MATH  Google Scholar 

  4. Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24615-9

    Book  Google Scholar 

  5. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, Singapore (2010). https://doi.org/10.1142/9789814313995

  6. Schwalbe, K.H., Scheider, I., Cornec, A.: Guidelines for Applying Cohesive Models to the Damage Behaviour of Engineering Materials and Structures. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-29494-5

    Book  Google Scholar 

  7. Barenblatt, G.: J. Appl. Math. Mech. 23(3), 622 (1959). https://doi.org/10.1016/0021-8928(59)90157-1

    Article  MathSciNet  Google Scholar 

  8. Dugdale, D.: J. Mech. Phys. Solids 8(2), 100 (1960). https://doi.org/10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  9. Needleman, A.: Procedia IUTAM 10, 221 (2014). https://doi.org/10.1016/j.piutam.2014.01.020

    Article  Google Scholar 

  10. Hillerborg, A., Modéer, M., Petersson, P.E.: Cem. Concr. Res. 6(6), 773 (1976)

    Google Scholar 

  11. Bažant, Z.P.: Eng. Fract. Mech. 69(2), 165 (2002). https://doi.org/10.1016/s0013-7944(01)00084-4

    Article  Google Scholar 

  12. Needleman, A.: J. Mech. Phys. Solids 38(3), 289 (1990)

    Google Scholar 

  13. Needleman, A.: Non-linear Fracture, pp. 21–40. Springer, Netherlands (1990). https://doi.org/10.1007/978-94-017-2444-9_2

    Chapter  Google Scholar 

  14. Scheider, I., Brocks, W.: Eng. Fract. Mech. 70(14), 1943 (2003). https://doi.org/10.1016/s0013-7944(03)00133-4

    Article  Google Scholar 

  15. Tvergaard, V., Hutchinson, J.W.: J. Mech. Phys. Solids 40(6), 1377 (1992). https://doi.org/10.1016/0022-5096(92)90020-3

    Article  Google Scholar 

  16. Dassault Systèmes, SIMULIA Corp., ABAQUS version 2017 documentation (2017)

    Google Scholar 

  17. Gurtin, M.E.: J. Appl. Math. Phys. (ZAMP) 30(6), 991 (1979). https://doi.org/10.1007/BF01590496

    Article  Google Scholar 

  18. Rice, J.R., Wang, J.S.: Mater. Sci. Eng.: A 107, 23 (1989)

    Google Scholar 

  19. Bouvard, J., Chaboche, J., Feyel, F., Gallerneau, F.: Int. J. Fatigue 31(5), 868 (2009). https://doi.org/10.1016/j.ijfatigue.2008.11.002

    Article  Google Scholar 

  20. Nase, M., Rennert, M., Naumenko, K., Eremeyev, V.A.: J. Mech. Phys. Solids 91, 40 (2016). https://doi.org/10.1016/j.jmps.2016.03.001

    Article  MathSciNet  Google Scholar 

  21. Chandra, N., Li, H., Shet, C., Ghonem, H.: Int. J. Solids Struct. 39(10), 2827 (2002). https://doi.org/10.1016/s0020-7683(02)00149-x

    Article  Google Scholar 

  22. Naumenko, K., Altenbach, H.: Modeling High Temperature Materials Behavior for Structural Analysis. Springer International Publishing, New York (2016). https://doi.org/10.1007/978-3-319-31629-1

    Book  Google Scholar 

  23. Fagerström, M., Larsson, R.: J. Mech. Phys. Solids 56(10), 3037 (2008). https://doi.org/10.1016/j.jmps.2008.06.002

    Article  MathSciNet  Google Scholar 

  24. Helmholtz, H.: Physical Memoirs Selected and Translated from Foreign Sources. Physical Society of London, vol. 1, pp. 43–97. Taylor & Francis, London (1882) (1888)

    Google Scholar 

  25. Clausius, R.: The Mechanical Theory of Heat. Macmillan, London (1879)

    Google Scholar 

  26. Duhem, P.: Mixture and Chemical Combination, pp. 291–309. Springer, Netherlands (1901) (2002). https://doi.org/10.1007/978-94-017-2292-6_22

    Chapter  Google Scholar 

  27. Truesdell, C.: J. Ration. Mech. Anal. 1, 125 (1952)

    Google Scholar 

  28. Coleman, B.D.: The Rational Spirit in Modern Continuum Mechanics, pp. 1–13. Kluwer Academic Publishers, New York (2003). https://doi.org/10.1007/1-4020-2308-1_1

  29. Musto, M.: On the formulation of hereditary cohesive-zone models. Ph.D. thesis, Brunel University School of Engineering and Design (2014)

    Google Scholar 

  30. Gao, Y.F., Bower, A.F.: Model. Simul. Mater. Sci. Eng. 12(3), 453 (2004). https://doi.org/10.1088/0965-0393/12/3/007

    Article  Google Scholar 

  31. Needleman, A.: Comput. Methods Appl. Mech. Eng. 67(1), 69 (1988). https://doi.org/10.1016/0045-7825(88)90069-2

    Article  Google Scholar 

  32. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics. Springer, Berlin (2005). https://doi.org/10.1007/b138882

  33. Miehe, C., Hofacker, M., Welschinger, F.: Comput. Methods Appl. Mech. Eng. 199(45–48), 2765 (2010). https://doi.org/10.1016/j.cma.2010.04.011

    Article  MathSciNet  Google Scholar 

  34. Abu-Eishah, S., Haddad, Y., Solieman, A., Bajbouj, A.: J. Lat. Am. Appl. Res. (LAAR) 34, 257 (2004)

    Google Scholar 

  35. Narender, K., Rao, A.S.M., Rao, K.G.K., Krishna, N.G.: J. Mod. Phys. 04(03), 331 (2013). https://doi.org/10.4236/jmp.2013.43045

    Article  Google Scholar 

  36. Leckie, F., Hayhurst, D.: Acta Metall. 25(9), 1059 (1977). https://doi.org/10.1016/0001-6160(77)90135-3

    Article  Google Scholar 

  37. Cocks, A., Ashby, M.: Prog. Mater. Sci. 27(3–4), 189 (1982). https://doi.org/10.1016/0079-6425(82)90001-9

    Article  Google Scholar 

  38. Fourier, J.B.J.: Théorie Analytique de la Chaleur. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/cbo9780511693229

  39. Holzapfel, G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000)

    Google Scholar 

  40. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-71001-1

  41. Allix, O., Corigliano, A.: Int. J. Solids Struct. 36(15), 2189 (1999). https://doi.org/10.1016/s0020-7683(98)00079-1

    Article  Google Scholar 

  42. Dhondt, G.: The Finite Element Method for Three-Dimensional Thermomechanical Applications. Wiley-Blackwell, Hoboken (2004)

    Book  Google Scholar 

  43. Park, K., Paulino, G.H.: Eng. Fract. Mech. 93, 239 (2012). https://doi.org/10.1016/j.engfracmech.2012.02.007

    Article  Google Scholar 

  44. Musto, M., Alfano, G.: Comput. Struct. 118, 126 (2013). https://doi.org/10.1016/j.compstruc.2012.12.020

    Article  Google Scholar 

  45. de Borst, R., Sluys, L., Mühlhaus, H.B., Pamin, J.: Eng. Comput. 10(2), 99 (1993). https://doi.org/10.1108/eb023897

    Article  Google Scholar 

  46. Gens, A., Carol, I., Alonso, E.: Comput. Geotech. 7(1–2), 133 (1989). https://doi.org/10.1016/0266-352x(89)90011-6

    Article  Google Scholar 

  47. Schellekens, J.C.J., Borst, R.D.: Int. J. Numer. Methods Eng. 36(1), 43 (1993). https://doi.org/10.1002/nme.1620360104

    Article  Google Scholar 

  48. Svenning, E.: Comput. Methods Appl. Mech. Eng. 310, 460 (2016). https://doi.org/10.1016/j.cma.2016.07.031

    Article  MathSciNet  Google Scholar 

  49. Vignollet, J., May, S., de Borst, R.: Int. J. Numer. Methods Eng. 102(11), 1733 (2015). https://doi.org/10.1002/nme.4867

    Article  MathSciNet  Google Scholar 

  50. Yu, H., Olsen, J.S., Olden, V., Alvaro, A., He, J., Zhang, Z.: Eng. Fract. Mech. 166, 23 (2016). https://doi.org/10.1016/j.engfracmech.2016.08.019

    Article  Google Scholar 

  51. Nordmann, J., Thiem, P., Cinca, N., Naumenko, K., Krüger, M.: J. Strain Anal. Eng. Des. 53(4), 255 (2018). https://doi.org/10.1177/0309324718761305

    Article  Google Scholar 

  52. Alfano, G., Crisfield, M.A.: Int. J. Numer. Methods Eng. 50(7), 1701 (2001). https://doi.org/10.1002/nme.93

    Article  Google Scholar 

  53. Turon, A., Dávila, C., Camanho, P., Costa, J.: Eng. Fract. Mech. 74(10), 1665 (2007). https://doi.org/10.1016/j.engfracmech.2006.08.025

    Article  Google Scholar 

  54. Ersoy, N., Ahmadvashaghbash, S., Engül, M., Öz, F.E.: Eur. Conf. Compos. Mater. (2018)

    Google Scholar 

Download references

Acknowledgements

The financial support rendered by the German Research Foundation (DFG) in context of the research training group ‘Micro-Macro-Interactions of Structured Media and Particle Systems’ (RTG 1554) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Nordmann .

Editor information

Editors and Affiliations

Appendix

Appendix

Arranging of displacement, position and temperature vector for a 2D cohesive element

$$\begin{aligned} \begin{aligned} {{\mathbf {\mathsf{{u}}}}}^{\mathrm {e}}&=\begin{bmatrix} u_{1x}&u_{1y}&u_{2x}&\ldots&u_{ny} \end{bmatrix}^{\top }\, ,\quad n={NN}\\ {{\mathbf {\mathsf{{x}}}}}^{\mathrm {e}}&=\begin{bmatrix} x_{1x}&x_{1y}&x_{2x}&\ldots&x_{ny} \end{bmatrix}^{\top }\, ,\quad n={NN}\\ {{\varvec{\uptheta }}}^{\mathrm {e}}&=\begin{bmatrix} \theta _{1}&\theta _{2}&\ldots&\theta _{n} \end{bmatrix}^{\top }\, ,\quad n={NN}\end{aligned} \end{aligned}$$

Arranging of total \({DOF}\) and residual vector for a 2D cohesive element

$$\begin{aligned} \begin{aligned} {{\mathbf {\mathsf{{p}}}}}^{\mathrm {e}}&=\begin{bmatrix} {{\mathbf {\mathsf{{u}}}}}^{\mathrm {e}} \\[1ex] {{\varvec{\uptheta }}}^{\mathrm {e}} \end{bmatrix} \\ {{\mathbf {\mathsf{{r}}}}}^{\mathrm {e}}_{\mathrm {i}}&=\begin{bmatrix} {{\mathbf {\mathsf{{r}}}}}^{\mathrm {e}}_{\mathrm {i,u}} \\[1ex] {{\mathbf {\mathsf{{r}}}}}^{\mathrm {e}}_{\mathrm {i,}\uptheta } \end{bmatrix} \end{aligned} \end{aligned}$$

Shape functions for a 2D cohesive element

$$\begin{aligned} \begin{aligned} N_{1}&=\frac{1}{2}\left( 1-\xi _{1}\right) \\ N_{2}&=\frac{1}{2}\left( 1+\xi _{1}\right) \end{aligned} \end{aligned}$$

Arranging of the displacement and temperature shape function matrix

$$\begin{aligned} \begin{aligned} {{\mathbf {\mathsf{{N}}}}}_{\mathrm {u}}&=\begin{bmatrix} N_{1}&0&N_{2}&0 \\ 0&N_{1}&0&N_{2} \end{bmatrix}\\ {{\mathbf {\mathsf{{N}}}}}_{\uptheta }&=\begin{bmatrix} N_{1}&N_{2} \end{bmatrix}\\ \end{aligned} \end{aligned}$$

Arranging of the displacement and temperature mean value matrix

$$\begin{aligned} \begin{aligned} {{\mathbf {\mathsf{{M}}}}}_{\mathrm {u}}&=\begin{bmatrix} 1&0&0&0&0&0&1&0 \\ 0&1&0&0&0&0&0&1 \\ 0&0&1&0&1&0&0&0 \\ 0&0&0&1&0&1&0&0 \end{bmatrix}\\ {{\mathbf {\mathsf{{M}}}}}_{\uptheta }&=\begin{bmatrix} 1&0&0&1 \\ 0&1&1&0 \end{bmatrix} \end{aligned} \end{aligned}$$

Arranging of the displacement and temperature separation relation matrix

$$\begin{aligned} \begin{aligned} {{\mathbf {\mathsf{{L}}}}}_{\mathrm {u}}&=\begin{bmatrix} -1&0&0&0&\quad 0&\quad 0&\quad 1&\quad 0 \\ 0&-1&0&0&\quad 0&\quad 0&\quad 0&\quad 1 \\ 0&0&-1&0&\quad 1&\quad 0&\quad 0&\quad 0 \\ 0&0&0&-1&\quad 0&\quad 1&\quad 0&\quad 0 \end{bmatrix} \\ {{\mathbf {\mathsf{{L}}}}}_{\uptheta }&=\begin{bmatrix} -1&0&\quad 0&\quad 1 \\ 0&-1&\quad 1&\quad 0 \end{bmatrix} \end{aligned} \end{aligned}$$

Arranging of the elasticity matrix

$$\begin{aligned} {{\mathbf {\mathsf{{C}}}}}_{\mathrm {TSL}}=\begin{bmatrix} C_{\mathrm {n}}&0 \\ 0&C_{\mathrm {t}} \end{bmatrix} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nordmann, J., Naumenko, K., Altenbach, H. (2020). Cohesive Zone Models—Theory, Numerics and Usage in High-Temperature Applications to Describe Cracking and Delamination. In: Naumenko, K., Krüger, M. (eds) Advances in Mechanics of High-Temperature Materials. Advanced Structured Materials, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-23869-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23869-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23868-1

  • Online ISBN: 978-3-030-23869-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics