Skip to main content

Sextic Fields

  • Chapter
  • First Online:
Diophantine Equations and Power Integral Bases
  • 459 Accesses

Abstract

In Sect. 11.1 we shall summarize how the analogue of the method of Sect. 10.1 can be applied for sextic fields. Further we present much more efficient methods to calculate generators of power integral bases in case the sextic field admits some additional property, making the index form equation easier. We have efficient algorithms for sextic fields having quadratic or cubic subfields (see Sects. 11.2 and 11.3). Investigating the structure of the index form in sextic fields with a quadratic subfield we shall point out the important role of various types of Thue equations (see Gaál, Application of Thue equations to computing power integral bases in algebraic number fields. In: Proceedings of the Conference on ANTS II. Lecture notes in computer science, vol 1122. Springer, Berlin, pp 151–155, 1996). In Sect. 11.4 we shall consider sextic fields that are composites of a quadratic and a cubic field. We show some interesting applications of the results of Sect. 7.5.2 on composite fields. We close the chapter by investigating power integral bases in the infinite parametric family of simplest sextic fields (Sect. 11.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Bergé, J. Martinet, M. Olivier, The computation of sextic fields with a quadratic subfield. Math. Comput. 54, 869–884 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Bilu, I. Gaál, K. Győry, Index form equations in sextic fields: a hard computation. Acta Arith. 115, 85–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, S.M. Watt (eds.), MAPLE, Reference Manual (Watcom Publications, Waterloo, 1988)

    Google Scholar 

  4. H. Cohen, A Course in Computational Algebraic Number Theory (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  5. M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, K. Wildanger, KANT V4. J. Symb. Comput. 24, 267–283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Eloff, B.K. Spearman, K.S. Williams, A4-sextic fields with a power basis. Missouri J. Math. Sci. 19(3), 188–194 (2007)

    MATH  Google Scholar 

  7. V. Ennola, S. Mäki, R. Turunen, On real cyclic sextic fields. Math. Comput. 45, 591–611 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. U. Fincke, M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44, 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Gaál, Computing elements of given index in totally complex cyclic sextic fields. J. Symb. Comput. 20, 61–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Gaál, Computing all power integral bases in orders of totally real cyclic sextic number fields. Math. Comput. 65, 801–822 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Gaál, P. Olajos, M. Pohst, Power integer bases in orders of composite fields. Exp. Math. 11(1), 87–90 (2002)

    Article  MATH  Google Scholar 

  12. I. Gaál, M. Pohst, On the resolution of index form equations in sextic fields with an imaginary quadratic subfield. J. Symb. Comput. 22, 425–434 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Gaál, L. Remete, Integral bases and monogenity of the simplest sextic fields. Acta Arith. 183(2), 173–183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Hoshi, On the simplest sextic fields and related Thue equations. Funct. Approximatio, Comment. Math. 47, 35–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Járási, Power integral bases in sextic fields with a cubic subfield. Acta Sci. Math. 69(1–2), 3–15 (2003)

    MathSciNet  MATH  Google Scholar 

  16. M.J. Lavallee, B.K. Spearman, K.S. Williams, Lifting monogenic cubic fields to monogenic sextic fields. Kodai Math. J. 34(3), 410–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Lettl, A. Pethő, P. Voutier, On the arithmetic of simplest sextic fields and related Thue equations, in Number Theory, ed. by K. Győry, A. Pethő, V. T. Sós (Walter de Gruyter, Berlin, 1998), pp. 331–348

    Google Scholar 

  18. S. Mäki, The Determination of Units in Real Cyclic Sextic Fields. Lecture Notes in Mathematics, vol. 797 (Springer, Berlin, 1980)

    Google Scholar 

  19. M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39, 41–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Olajos, Power integral bases in a parametric family of sextic fields. Publ. Math. 58, 779–790 (2001)

    MathSciNet  MATH  Google Scholar 

  21. M. Olivier, Corps sextiques contenant un corps quadratique (I). Séminaire de Théorie des Nombres Bordeaux 1, 205–250 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Pohst, H. Zassenhaus, Algorithmic Algebraic Number Theory (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  23. D. Shanks, The simplest cubic fields. Math. Comput. 28, 1137–1152 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. B.K. Spearman, A. Watanabe, K.S. Williams, PSL(2,5) sextic fields with a power basis. Kodai Math. J. 29(1), 5–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.I.A. Shah, Monogenesis of the ring of integers in a cyclic sextic field of a prime conductor. Rep. Fac. Sci. Eng. Saga Univ. Math. 29, 1–10 (2000)

    MathSciNet  MATH  Google Scholar 

  26. E. Thomas, Complete solutions to a family of cubic Diophantine equations. J. Number Theory 34, 235–250 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaál, I. (2019). Sextic Fields. In: Diophantine Equations and Power Integral Bases. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-23865-0_11

Download citation

Publish with us

Policies and ethics