Skip to main content

Product Demand Forecasting Based on Reservoir Computing

  • Conference paper
  • First Online:
Operations Management for Social Good (POMS 2018)

Abstract

Common forecasting methods fail to accurately model the nonlinear and time-varying fluctuations of product demand. Reservoir computing (RC) utilizes a dynamical system to project time-series data to a higher-dimensional state representation extracting mathematical relations within complex demand functions. We demonstrate forecasting accuracy of RC on a multivariate product demand dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5, 157–166 (1994)

    Article  Google Scholar 

  2. Coulibaly, P.: Reservoir computing approach to Great Lakes water level forecasting. J. Hydrol. 381(1–2), 76–88 (2010)

    Article  Google Scholar 

  3. Ediger, V.Ş., Akar, S.: ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35(3), 1701–1708 (2007)

    Article  Google Scholar 

  4. Hammer, B., Steil, J.J.: Tutorial: perspectives on learning with RNNs. In: Proc. ESANN, pp. 357–368 (2002)

    Google Scholar 

  5. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20(1), 5–10 (2004)

    Article  Google Scholar 

  6. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2018)

    Google Scholar 

  7. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. GMD Report 148. German National Research Center for Information Technology (2018)

    Google Scholar 

  8. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Google Scholar 

  9. Kohzadi, N., Boyd, M.S., Kermanshahi, B., Kaastra, I.: A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing 10(2), 169–181 (1996)

    Article  Google Scholar 

  10. Larger, L., Soriano, M.C., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera, L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012)

    Article  Google Scholar 

  11. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  Google Scholar 

  12. Salmen, M., Ploger, P.G.: Echo state networks used for motor control. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1953–1958 (2005)

    Google Scholar 

  13. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with python. In: 9th Python in Science Conference (2010)

    Google Scholar 

  14. Sheng, C., Zhao, J., Liu, Y., Wang, W.: Prediction for noisy nonlinear time series by echo state network based on dual estimation. Neurocomputing 82, 186–195 (2012)

    Article  Google Scholar 

  15. Taylor, J.W.: Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 54(8), 799–805 (2003)

    Article  Google Scholar 

  16. Triefenbach, F., Demuynck, K., Martens, J.P.: Large vocabulary continuous speech recognition with reservoir-based acoustic models. IEEE Signal Process. Lett. 21(3), 311–315 (2014)

    Article  Google Scholar 

  17. Verstraeten, D., Schrauwen, B., Dieleman, S., Brakel, P., Buteneers, P., Pecevski, D.: Oger: modular learning architectures for large-scale sequential processing. J. Mach. Learn. Res. 13, 2995–2998 (2012)

    Google Scholar 

  18. Williams, B., Durvasula, P., Brown, D.: Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec.: J. Transp. Res. Board 1644, 132–141 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bürger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calvimontes, J., Bürger, J. (2020). Product Demand Forecasting Based on Reservoir Computing. In: Leiras, A., González-Calderón, C., de Brito Junior, I., Villa, S., Yoshizaki, H. (eds) Operations Management for Social Good. POMS 2018. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-23816-2_2

Download citation

Publish with us

Policies and ethics