Advertisement

DE VITO: A Dual-Arm, High Degree-of-Freedom, Lightweight, Inexpensive, Passive Upper-Limb Exoskeleton for Robot Teleoperation

  • Fabian FalckEmail author
  • Kawin Larppichet
  • Petar Kormushev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11649)

Abstract

While robotics has made significant advances in perception, planning and control in recent decades, the vast majority of tasks easily completed by a human, especially acting in dynamic, unstructured environments, are far from being autonomously performed by a robot. Teleoperation, remotely controlling a slave robot by a human operator, can be a realistic, complementary transition solution that uses the motion intelligence of a human in complex tasks while exploiting the robot’s autonomous reliability and precision in less challenging situations.

We introduce DE VITO, a seven degree-of-freedom, dual-arm upper-limb exoskeleton that passively measures the pose of a human arm. DE VITO is a lightweight, simplistic and energy-efficient design with a total material cost of at least an order of magnitude less than previous work. Given the estimated human pose, we implement both joint and Cartesian space kinematic control algorithms and present qualitative experimental results on various complex manipulation tasks teleoperating Robot DE NIRO, a research platform for mobile manipulation, that demonstrate the functionality of DE VITO. We provide the CAD models, open-source code and supplementary videos of DE VITO at http://www.imperial.ac.uk/robot-intelligence/robots/de_vito/.

Keywords

Upper-limb exoskeleton Teleoperation Remote control Semi-autonomous control Human-in-the-loop control Manipulation 

References

  1. 1.
    Ackerman, E.: Toyota gets back into humanoid robots with new T-HR3 (2018). https://spectrum.ieee.org/automaton/robotics/humanoids/toyota-gets-back-into-humanoid-robots-with-new-thr3
  2. 2.
    Ackerman, E., Guizzo, E.: DARPA robotics challenge finals: rules and course (2018). https://spectrum.ieee.org/automaton/robotics/humanoids/drc-finals-course
  3. 3.
    Boone, D.C., Azen, S.P.: Normal range of motion of joints in male subjects. J. Bone Joint Surg. 61(5), 756–759 (1979)CrossRefGoogle Scholar
  4. 4.
    clinicalgate.com: Upper limb - general description (2015). https://clinicalgate.com/upper-limb-2/
  5. 5.
    Debrunner, T., Saeedi, S., Kelly, P.H.: AUKE: automatic kernel code generation for an analogue simd focal-plane sensor-processor array. ACM Trans. Archit. Code Optim. (TACO) 15(4), 59 (2019)Google Scholar
  6. 6.
    Falck, F., Doshi, S., Smuts, N., Lingi, J., Rants, K., Kormushev, P.: Human-centered manipulation and navigation with Robot DE NIRO. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop Towards Robots that Exhibit Manipulation Intelligence (2018)Google Scholar
  7. 7.
    Fang, B., Guo, D., Sun, F., Liu, H., Wu, Y.: A robotic hand-arm teleoperation system using human arm/hand with a novel data glove. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2483–2488. IEEE (2015)Google Scholar
  8. 8.
    Gopura, R., Kiguchi, K., Bandara, D.: A brief review on upper extremity robotic exoskeleton systems. In: 2011 6th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 346–351. IEEE (2011)Google Scholar
  9. 9.
    Hirche, S., Buss, M.: Human-oriented control for haptic teleoperation. Proc. IEEE 100(3), 623–647 (2012)CrossRefGoogle Scholar
  10. 10.
    Jarrasse, N., Morel, G.: Connecting a human limb to an exoskeleton. IEEE Trans. Robot. 28(3), 697–709 (2012)CrossRefGoogle Scholar
  11. 11.
    Kemp, C.C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 20–29 (2007)CrossRefGoogle Scholar
  12. 12.
    Kim, B., Deshpande, A.D.: Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 538–542. IEEE (2015)Google Scholar
  13. 13.
    Krishnan, R.H., Devanandh, V., Brahma, A.K., Pugazhenthi, S.: Estimation of mass moment of inertia of human body, when bending forward, for the design of a self-transfer robotic facility. J. Eng. Sci. Technol. 11(2), 166–176 (2016)Google Scholar
  14. 14.
    Lu, J., Haninger, K., Chen, W., Gowda, S., Tomizuka, M., Carmena, J.M.: Design of a passive upper limb exoskeleton for macaque monkeys. J. Dyn. Syst. Measur. Control 138(11), 111011 (2016)CrossRefGoogle Scholar
  15. 15.
    Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R., Riener, R.: ARMin-exoskeleton for arm therapy in stroke patients. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 68–74. IEEE (2007)Google Scholar
  16. 16.
    Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)CrossRefGoogle Scholar
  17. 17.
    Research Robotics: Baxter research robot SDK wiki - arm control overview and hardware specifications (2015). http://sdk.rethinkrobotics.com/wiki/Arm_Control_Overview, http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fabian Falck
    • 1
    Email author
  • Kawin Larppichet
    • 1
  • Petar Kormushev
    • 1
  1. 1.Robot Intelligence Lab, Dyson School of Design EngineeringImperial College LondonLondonUK

Personalised recommendations