Advertisement

A Method to Estimate the Oblique Arch Folding Axis for Thumb Assistive Devices

  • Visakha K. NanayakkaraEmail author
  • Nantachai Sornkaran
  • Hasitha Wegiriya
  • Nikolaos Vitzilaios
  • Demetrios Venetsanos
  • Nicolas Rojas
  • M. Necip Sahinkaya
  • Thrishantha Nanayakkara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11649)

Abstract

People who use the thumb in repetitive manipulation tasks are likely to develop thumb related impairments from excessive loading at the base joints of the thumb. Biologically informed wearable robotic assistive mechanisms can provide viable solutions to prevent occurring such injuries. This paper tests the hypothesis that an external assistive force at the metacarpophalangeal joint will be most effective when applied perpendicular to the palm folding axis in terms of maximizing the contribution at the thumb-tip as well as minimizing the projections on the vulnerable base joints of the thumb. Experiments conducted using human subjects validated the predictions made by a simplified kinematic model of the thumb that includes a foldable palm, showing that: (1) the palm folding angle varies from \(71.5^{\circ }\) to \(75.3^{\circ }\) (from the radial axis in the coronal plane) for the four thumb-finger pairs and (2) the most effective assistive force direction (from the ulnar axis in the coronal plane) at the MCP joint is in the range \(0^{\circ }< \psi < 30^{\circ }\) for the four thumb-finger pairs. These findings provide design guidelines for hand assistive mechanisms to maximize the efficacy of thumb external assistance.

Keywords

Thumb kinematics Foldable palm Metacarpophalangeal joint Thumb assistance 

References

  1. 1.
    Aubin, P.M., Sallum, H., Walsh, C., Stirling, L., Correia, A.: A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA). In: IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2013)Google Scholar
  2. 2.
    Cempini, M., Cortese, M., Vitiello, N.: A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes. IEEE/ASME Trans. Mechatron. 20(2), 705–716 (2015)CrossRefGoogle Scholar
  3. 3.
    Chang, L.Y., Matsuoka, Y.: A Kinematic thumb model for the act hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1000–1005 (2006)Google Scholar
  4. 4.
    Colditz, J.C.: The biomechanics of a thumb carpometacarpal immobilization splint: design and fitting. J. Hand Ther. 13(3), 228–235 (2000)CrossRefGoogle Scholar
  5. 5.
    Cotugno, G., Althoefer, K., Nanayakkara, T.: The role of the thumb: study of finger motion in grasping and reachability space in human and robotic hands. IEEE Trans. Syst. Man Cybern. 47(7), 1061–1070 (2016)CrossRefGoogle Scholar
  6. 6.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, vol. 3. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  7. 7.
    De Monsabert, B.G., Rossi, J., Berton, E., Vigouroux, L.: Quantification of hand and forearm muscle forces during a maximal power grip task. Med. Sci. Sports Exerc. 44(10), 1906–1916 (2012)CrossRefGoogle Scholar
  8. 8.
    Diftler, M., et al.: RoboGlove - a robonaut derived multipurpose assistive device (2014)Google Scholar
  9. 9.
    Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46(1), 66–77 (2016)CrossRefGoogle Scholar
  10. 10.
    Kang, B.B., Lee, H., In, H., Jeong, U., Chung, J., Cho, K.J.: Development of a polymer-based tendon-driven wearable robotic hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3750–3755 (2016)Google Scholar
  11. 11.
    Ladd, A.L., et al.: The thumb carpometacarpal joint: anatomy, hormones, and biomechanics. Instr. Course Lect. 62, 165–179 (2013)Google Scholar
  12. 12.
    Nanayakkara, V., et al.: Kinematic analysis of the human thumb with foldable palm. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 226–238. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40379-3_23CrossRefGoogle Scholar
  13. 13.
    Nanayakkara, V.K., Cotugno, G., Vitzilaios, N., Venetsanos, D., Nanayakkara, T., Sahinkaya, M.N.: The role of morphology of the thumb in anthropomorphic grasping: a review. Front. Mech. Eng. 3(5) (2017).  https://doi.org/10.3389/fmech.2017.00005
  14. 14.
    Neumann, D.A., Bielefeld, T.: The carpometacarpal joint of the thumb: stability, deformity, and therapeutic intervention. J. Orthop. Sports Phys. Ther. 33(7), 386–399 (2003)CrossRefGoogle Scholar
  15. 15.
    Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)CrossRefGoogle Scholar
  16. 16.
    Sangole, A.P., Levin, M.F.: Arches of the hand in reach to grasp. J. Biomech. 41(4), 829–837 (2008)CrossRefGoogle Scholar
  17. 17.
    Santos, V.J., Valero-Cuevas, F.J.: Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. IEEE Trans. Biomed. Eng. 53(2), 155–163 (2006)CrossRefGoogle Scholar
  18. 18.
    Valero-Cuevas, F.J., Johanson, M.E., Towles, J.D.: Towards a realistic biomechanical model of the thumb: the choice of Kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7), 1019–1030 (2003)CrossRefGoogle Scholar
  19. 19.
    Wu, J.Z., et al.: Inverse dynamic analysis of the biomechanics of the thumb while pipetting: a case study. Med. Eng. Phys. 34(6), 693–701 (2012)CrossRefGoogle Scholar
  20. 20.
    Xiloyannis, M., Cappello, L., Khanh, D.B., Yen, S.C., Masia, L.: Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1213–1219 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Visakha K. Nanayakkara
    • 1
    Email author
  • Nantachai Sornkaran
    • 2
  • Hasitha Wegiriya
    • 2
  • Nikolaos Vitzilaios
    • 3
  • Demetrios Venetsanos
    • 4
  • Nicolas Rojas
    • 5
  • M. Necip Sahinkaya
    • 6
  • Thrishantha Nanayakkara
    • 5
  1. 1.Mechanical Engineering DepartmentCEMAST CampusFarehamUK
  2. 2.Department of InformaticsKing’s College LondonLondonUK
  3. 3.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  4. 4.School of Mechanical, Aerospace and Automotive EngineeringCoventry UniversityCoventryUK
  5. 5.Dyson School of Design EngineeringImperial College LondonLondonUK
  6. 6.Department of Mechanical and Automotive EngineeringKingston University LondonKingstonUK

Personalised recommendations