Probabilistic Planning for Robotics with ROSPlan

  • Gerard CanalEmail author
  • Michael Cashmore
  • Senka Krivić
  • Guillem Alenyà
  • Daniele Magazzeni
  • Carme Torras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11649)


Probabilistic planning is very useful for handling uncertainty in planning tasks to be carried out by robots. ROSPlan is a framework for task planning in the Robot Operating System (ROS), but until now it has not been possible to use probabilistic planners within the framework. This systems paper presents a standardized integration of probabilistic planners into ROSPlan that allows for reasoning with non-deterministic effects and is agnostic to the probabilistic planner used. We instantiate the framework in a system for the case of a mobile robot performing tasks indoors, where probabilistic plans are generated and executed by the PROST planner. We evaluate the effectiveness of the proposed approach in a real-world robotic scenario.


  1. 1.
    Atrash, A., Koenig, S.: Probabilistic planning for behavior-based robots. In: FLAIRS, pp. 531–535 (2001)Google Scholar
  2. 2.
    Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., Slack, M.G.: Experiences with an architecture for intelligent, reactive agents. J. Exp. Theor. Artif. Intell. 9(2–3), 237–256 (1997)CrossRefGoogle Scholar
  3. 3.
    Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. J. Artif. Intell. Res. 11, 1–94 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Buksz, R.D., Cashmore, M., Krarup, B., Magazzeni, D., Ridder, B.C.: Strategic-tactical planning for autonomous underwater vehicles over long horizons. In: IROS (2018)Google Scholar
  5. 5.
    Canal, G., Alenyà, G., Torras, C.: Adapting robot task planning to user preferences: an assistive shoe dressing example. Auton. Robots 1–14 (2018).
  6. 6.
    Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: ICAPS (2015)Google Scholar
  7. 7.
    Celorrio, S.J., Fernández, F., Borrajo, D.: The PELA architecture: integrating planning and learning to improve execution. In: AAAI (2008)Google Scholar
  8. 8.
    Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Comput. Intell. 5(2), 142–150 (1989)CrossRefGoogle Scholar
  9. 9.
    Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003)CrossRefGoogle Scholar
  10. 10.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  11. 11.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)CrossRefGoogle Scholar
  12. 12.
    Hoey, J., Von Bertoldi, A., Poupart, P., Mihailidis, A.: Assisting persons with dementia during handwashing using a partially observable Markov decision process. Vis. Syst. 65, 66 (2007)Google Scholar
  13. 13.
    Hoffmann, J.: The Metric-FF planning system: translating “ignoring delete lists” to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)CrossRefGoogle Scholar
  14. 14.
    Hsiao, K., Kaelbling, L.P., Lozano-Perez, T.: Grasping POMDPs. In: ICRA (2007)Google Scholar
  15. 15.
    Iocchi, L., Jeanpierre, L., Lázaro, M.T., Mouaddib, A.I.: A practical framework for robust decision-theoretic planning and execution for service robots. In: ICAPS, pp. 486–494 (2016)Google Scholar
  16. 16.
    Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In: ICAPS (2012)Google Scholar
  17. 17.
    Kolobov, A., Dai, P., Mausam, M., Weld, D.S.: Reverse iterative deepening for finite-horizon MDPs with large branching factors. In: ICAPS (2012)Google Scholar
  18. 18.
    Krivic, S., Cashmore, M., Magazzeni, D., Ridder, B., Szedmak, S., Piater, J.: Decreasing uncertainty in planning with state prediction. In: IJCAI, pp. 2032–2038, August 2017Google Scholar
  19. 19.
    Kushmerick, N., Hanks, S., Weld, D.S.: An algorithm for probabilistic planning. Artif. Intell. 76(1–2), 239–286 (1995)CrossRefGoogle Scholar
  20. 20.
    Little, I., Thiebaux, S.: Probabilistic planning vs replanning. In: ICAPS Workshop on Planning Competitions: Past, Present, and Future (2007)Google Scholar
  21. 21.
    Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: ICML, pp. 157–163 (1994)Google Scholar
  22. 22.
    Martínez, D., Alenyà, G., Ribeiro, T., Inoue, K., Torras, C.: Relational reinforcement learning for planning with exogenous effects. J. Mach. Learn. Res. 18(1), 2689–2732 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Martínez, D., Alenyà, G., Torras, C.: Relational reinforcement learning with guided demonstrations. Artif. Intell. 247, 295–312 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Design of an office-guide robot for social interaction studies. In: IROS, pp. 4965–4970 (2006)Google Scholar
  25. 25.
    Sanner, S.: Relational dynamic influence diagram language (RDDL): language description (2010, unpublished manuscript)Google Scholar
  26. 26.
    Smith, B.D., Rajan, K., Muscettola, N.: Knowledge acquisition for the onboard planner of an autonomous spacecraft. In: Plaza, E., Benjamins, R. (eds.) EKAW 1997. LNCS, vol. 1319, pp. 253–268. Springer, Heidelberg (1997). Scholar
  27. 27.
    Smith, T., Simmons, R.: Probabilistic planning for robotic exploration. Ph.D. thesis, Carnegie Mellon University, The Robotics Institute (2007)Google Scholar
  28. 28.
    Veloso, M., et al.: Cobots: collaborative robots servicing multi-floor buildings. In: IROS, pp. 5446–5447 (2012)Google Scholar
  29. 29.
    Yoon, S.W., Fern, A., Givan, R.: FF-Replan: a baseline for probabilistic planning. In: ICAPS, pp. 352–359 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerard Canal
    • 1
    Email author
  • Michael Cashmore
    • 2
  • Senka Krivić
    • 2
  • Guillem Alenyà
    • 1
  • Daniele Magazzeni
    • 2
  • Carme Torras
    • 1
  1. 1.Institut de Robòtica i Informàtica Industrial, CSIC-UPCBarcelonaSpain
  2. 2.Department of Computer ScienceKing’s College LondonLondonUK

Personalised recommendations