Skip to main content

Probabilistic Planning for Robotics with ROSPlan

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11649))

Included in the following conference series:

Abstract

Probabilistic planning is very useful for handling uncertainty in planning tasks to be carried out by robots. ROSPlan is a framework for task planning in the Robot Operating System (ROS), but until now it has not been possible to use probabilistic planners within the framework. This systems paper presents a standardized integration of probabilistic planners into ROSPlan that allows for reasoning with non-deterministic effects and is agnostic to the probabilistic planner used. We instantiate the framework in a system for the case of a mobile robot performing tasks indoors, where probabilistic plans are generated and executed by the PROST planner. We evaluate the effectiveness of the proposed approach in a real-world robotic scenario.

This work has been supported by the ERC project Clothilde (ERC-2016-ADG-741930), the HuMoUR project (Spanish Ministry of Science and Innovation TIN2017-90086-R) and by the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656). G. Canal is also supported by the Spanish Ministry of Education, Culture and Sport by the FPU15/00504 doctoral grant and the mobility grant EST17/00371. The research from KCL was partly supported by Korea Evaluation Institute of Industrial Technology (KEIT) funded by the Ministry of Trade, Industry & Energy (MOTIE) (No. 1415158956).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code of the elements described in this paper can be found in the main ROSPlan repository https://github.com/KCL-Planning/ROSPlan.

  2. 2.

    Both PDDL and RDDL domains can be found here: https://github.com/m312z/KCL-Turtlebot/tree/master/domains.

  3. 3.

    A video demonstration of this setup can be found in https://youtu.be/aozTz4Ex7PI.

References

  1. Atrash, A., Koenig, S.: Probabilistic planning for behavior-based robots. In: FLAIRS, pp. 531–535 (2001)

    Google Scholar 

  2. Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., Slack, M.G.: Experiences with an architecture for intelligent, reactive agents. J. Exp. Theor. Artif. Intell. 9(2–3), 237–256 (1997)

    Article  Google Scholar 

  3. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. J. Artif. Intell. Res. 11, 1–94 (1999)

    Article  MathSciNet  Google Scholar 

  4. Buksz, R.D., Cashmore, M., Krarup, B., Magazzeni, D., Ridder, B.C.: Strategic-tactical planning for autonomous underwater vehicles over long horizons. In: IROS (2018)

    Google Scholar 

  5. Canal, G., Alenyà, G., Torras, C.: Adapting robot task planning to user preferences: an assistive shoe dressing example. Auton. Robots 1–14 (2018). https://doi.org/10.1007/s10514-018-9737-2

  6. Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: ICAPS (2015)

    Google Scholar 

  7. Celorrio, S.J., Fernández, F., Borrajo, D.: The PELA architecture: integrating planning and learning to improve execution. In: AAAI (2008)

    Google Scholar 

  8. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Comput. Intell. 5(2), 142–150 (1989)

    Article  Google Scholar 

  9. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

    Article  Google Scholar 

  10. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  11. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

    Article  Google Scholar 

  12. Hoey, J., Von Bertoldi, A., Poupart, P., Mihailidis, A.: Assisting persons with dementia during handwashing using a partially observable Markov decision process. Vis. Syst. 65, 66 (2007)

    Google Scholar 

  13. Hoffmann, J.: The Metric-FF planning system: translating “ignoring delete lists” to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)

    Article  Google Scholar 

  14. Hsiao, K., Kaelbling, L.P., Lozano-Perez, T.: Grasping POMDPs. In: ICRA (2007)

    Google Scholar 

  15. Iocchi, L., Jeanpierre, L., Lázaro, M.T., Mouaddib, A.I.: A practical framework for robust decision-theoretic planning and execution for service robots. In: ICAPS, pp. 486–494 (2016)

    Google Scholar 

  16. Keller, T., Eyerich, P.: PROST: probabilistic planning based on UCT. In: ICAPS (2012)

    Google Scholar 

  17. Kolobov, A., Dai, P., Mausam, M., Weld, D.S.: Reverse iterative deepening for finite-horizon MDPs with large branching factors. In: ICAPS (2012)

    Google Scholar 

  18. Krivic, S., Cashmore, M., Magazzeni, D., Ridder, B., Szedmak, S., Piater, J.: Decreasing uncertainty in planning with state prediction. In: IJCAI, pp. 2032–2038, August 2017

    Google Scholar 

  19. Kushmerick, N., Hanks, S., Weld, D.S.: An algorithm for probabilistic planning. Artif. Intell. 76(1–2), 239–286 (1995)

    Article  Google Scholar 

  20. Little, I., Thiebaux, S.: Probabilistic planning vs replanning. In: ICAPS Workshop on Planning Competitions: Past, Present, and Future (2007)

    Google Scholar 

  21. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: ICML, pp. 157–163 (1994)

    Google Scholar 

  22. Martínez, D., Alenyà, G., Ribeiro, T., Inoue, K., Torras, C.: Relational reinforcement learning for planning with exogenous effects. J. Mach. Learn. Res. 18(1), 2689–2732 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Martínez, D., Alenyà, G., Torras, C.: Relational reinforcement learning with guided demonstrations. Artif. Intell. 247, 295–312 (2017)

    Article  MathSciNet  Google Scholar 

  24. Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Design of an office-guide robot for social interaction studies. In: IROS, pp. 4965–4970 (2006)

    Google Scholar 

  25. Sanner, S.: Relational dynamic influence diagram language (RDDL): language description (2010, unpublished manuscript)

    Google Scholar 

  26. Smith, B.D., Rajan, K., Muscettola, N.: Knowledge acquisition for the onboard planner of an autonomous spacecraft. In: Plaza, E., Benjamins, R. (eds.) EKAW 1997. LNCS, vol. 1319, pp. 253–268. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0026790

    Chapter  Google Scholar 

  27. Smith, T., Simmons, R.: Probabilistic planning for robotic exploration. Ph.D. thesis, Carnegie Mellon University, The Robotics Institute (2007)

    Google Scholar 

  28. Veloso, M., et al.: Cobots: collaborative robots servicing multi-floor buildings. In: IROS, pp. 5446–5447 (2012)

    Google Scholar 

  29. Yoon, S.W., Fern, A., Givan, R.: FF-Replan: a baseline for probabilistic planning. In: ICAPS, pp. 352–359 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Canal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canal, G., Cashmore, M., Krivić, S., Alenyà, G., Magazzeni, D., Torras, C. (2019). Probabilistic Planning for Robotics with ROSPlan. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11649. Springer, Cham. https://doi.org/10.1007/978-3-030-23807-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23807-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23806-3

  • Online ISBN: 978-3-030-23807-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics