Advertisement

Towards Adversarial Training for Mobile Robots

  • Todd FlyrEmail author
  • Simon ParsonsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11649)

Abstract

This paper reports some preliminary work on learning on a physical robot. In particular, we report on an experiment to learn how to strike a ball to hit a target on the ground. We compare learning based just on previous trials with the robot with learning based on those trials plus additional data learnt using a generative adversarial network (GAN). We find that the additional data generated by the GAN improves the performance of the robot.

References

  1. 1.
    Arjovsky, M., Chintala, S., Bottou, L. https://github.com/martinarjovsky/WassersteinGAN (2017). Accessed 10 Jan 2019
  2. 2.
    Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv:1701.07875
  3. 3.
    Bongard, J.C.: Using robots to investigate the evolution of adaptive behavior. Curr. Opin. Behav. Sci. 6, 168–173 (2015)CrossRefGoogle Scholar
  4. 4.
    Coates, A., Baumstarck, P., Le, Q.V., Ng, A.Y.: Scalable learning for object detection with GPU hardware. In: IROS (2009)Google Scholar
  5. 5.
    Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)Google Scholar
  6. 6.
    Goodfellow, I.J.: Generative adversarial networks. CoRR, arXiv:1701.00160 (2017)
  7. 7.
    Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)Google Scholar
  8. 8.
    Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. CoRR, arXiv:1803.10892 (2018)
  9. 9.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)CrossRefGoogle Scholar
  10. 10.
    Lee, J., Ryoo, M.S.: Learning robot activities from first-person human videos using convolutional future regression. CoRR, arXiv:1703.01040 (2017)
  11. 11.
    Pinto, L., Gandhi, D., Han, Y., Park, Y.-L., Gupta, A.: The curious robot: learning visual representations via physical interactions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 3–18. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46475-6_1CrossRefGoogle Scholar
  12. 12.
    Swain, M., Stricker, M.: Promising directions in active vision. Int. J. Comput. Vis. 11, 109 (1993)CrossRefGoogle Scholar
  13. 13.
    Zelenak, A.: TF2 ROS quaternion basics. http://wiki.ros.org/tf2/Tutorials/Quaternions (2019). Accessed 10 Jan 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science, Graduate CenterCity University of New YorkNew York CityUSA
  2. 2.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations