Advertisement

Designing Origami-Adapted Deployable Modules for Soft Continuum Arms

  • Ketao ZhangEmail author
  • Kaspar Althoefer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11649)

Abstract

Origami has several attractive attributes including deployability and portability which have been extensively adapted in designs of robotic devices. Drawing inspiration from foldable origami structures, this paper presents an engineering design process for fast making deployable modules of soft continuum arms. The process is illustrated with an example which adapts a modified accordion fold pattern to a lightweight deployable module. Kinematic models of the four-sided Accordion fold pattern is explored in terms of mechanism theory. Taking account of both the kinematic model and the materials selection, a 2D flat sheet model of the four-sided Accordion fold pattern is obtained for 3D printing. Following the design process, the deployable module is then fabricated by laminating 3D printed origami skeleton and flexible thermoplastic polyurethane (TPU) coated fabric. Preliminary tests of the prototype shown that the folding motion are enabled mainly by the flexible fabric between the gaps of thick panels of the origami skeleton and matches the kinematic analysis. The proposed approach has advantages of quick scaling dimensions, cost effective and fast fabricating thus allowing adaptive design according to specific demands of various tasks.

Keywords

Origami-folding 3D printing Deployable module 

References

  1. 1.
    Kanade, T.: A theory of origami world. Artif. Intell. 13(3), 279–311 (1980)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lang, R.J.: Origami Design Secrets: Mathematical Methods for an Ancient Art. AK Peters/CRC Press, Natick (2011)CrossRefGoogle Scholar
  3. 3.
    Dai, J.S., Jones, J.R.: Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 216(10), 959–970 (2002)CrossRefGoogle Scholar
  4. 4.
    Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)Google Scholar
  5. 5.
    Greenberg, H., Gong, M.L., Magleby, S.P., Howell, L.L.: Identifying links between origami and compliant mechanisms. Mech. Sci. 2(2), 217–225 (2011)CrossRefGoogle Scholar
  6. 6.
    Song, J., Chen, Y., Lu, G.: Axial crushing of thin-walled structures with origami patterns. Thin-Walled Struct. 54, 65–71 (2012)CrossRefGoogle Scholar
  7. 7.
    Ma, J., You, Z.: Energy absorption of thin-walled square tubes with a prefolded origami pattern–part i: geometry and numerical simulation. J. Appl. Mech. 81(1), 011003 (2014)CrossRefGoogle Scholar
  8. 8.
    Martinez, R.V., Fish, C.R., Chen, X., Whitesides, G.M.: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater. 22(7), 1376–1384 (2012)CrossRefGoogle Scholar
  9. 9.
    An, S.M., Ryu, J., Cho, M., Cho, K.J.: Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model. Smart Mater. Struct. 21(5), 055009 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, K., Qiu, C., Dai, J.S.: An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 8(3), 031010 (2016)CrossRefGoogle Scholar
  11. 11.
    Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for building self-folding machines. Science 345(6197), 644–646 (2014)CrossRefGoogle Scholar
  12. 12.
    Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C.R., Rus, D.: An untethered miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1490–1496. IEEE (2015)Google Scholar
  13. 13.
    Salerno, M., Zhang, K., Menciassi, A., Dai, J.S.: A novel 4-DOF origami grasper with an SMA-actuation system for minimally invasive surgery. IEEE Trans. Robot. 32(3), 484–498 (2016)CrossRefGoogle Scholar
  14. 14.
    Kim, S.J., Lee, D.Y., Jung, G.P., Cho, K.J.: An origami-inspired, self-locking robotic arm that can be folded flat. Sci. Robot. 3(16), eaar2915 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhakypov, Z., Paik, J.: Design methodology for constructing multimaterial origami robots and machines. IEEE Trans. Robot. 34(1), 151–165 (2018)CrossRefGoogle Scholar
  16. 16.
    Liu, T., Wang, Y., Lee, K.: Three-dimensional printable origami twisted tower: design, fabrication, and robot embodiment. IEEE Robot. Autom. Lett. 3(1), 116–123 (2018)CrossRefGoogle Scholar
  17. 17.
    Li, S., Vogt, D.M., Rus, D., Wood, R.J.: Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. 114(50), 13132–13137 (2017).  https://doi.org/10.1073/pnas.1713450114CrossRefGoogle Scholar
  18. 18.
    Zhang, K., Zhu, Y., Lou, C., Zheng, P., Kovač, M.: A design and fabrication approach for pneumatic soft robotic arms using 3D printed origami skeletons. In: The 2019 IEEE International Conference on Soft Robotics (RoboSoft 2019), pp. 1–7. IEEE (2019)Google Scholar
  19. 19.
    Guest, S.D., Pellegrino, S.: The folding of triangulated cylinders, part i: geometric considerations. J. Appl. Mech. 61(4), 773–777 (1994)CrossRefGoogle Scholar
  20. 20.
    Morgan, J., Magleby, S.P., Howell, L.L.: An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des. 138(5), 052301 (2016)CrossRefGoogle Scholar
  21. 21.
    Tachi, T., Miura, K.: Rigid-foldable cylinders and cells. J. Int. Assoc. Shell Spat. Struct. 53(4), 217–226 (2012)Google Scholar
  22. 22.
    Zirbel, S.A., et al.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, K., Dai, J.S.: Classification of origami-enabled foldable linkages and emerging applications. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A024. American Society of Mechanical Engineers (2013)Google Scholar
  24. 24.
    Chen, Y., Feng, H., Ma, J., Peng, R., You, Z.: Symmetric waterbomb origami. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472(2190), 20150846 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, Y., Peng, R., You, Z.: Origami of thick panels. Science 349(6246), 396–400 (2015)CrossRefGoogle Scholar
  26. 26.
    MacCurdy, R., Katzschmann, R., Kim, Y., Rus, D.: Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids, pp. 3878–3885, May 2016.  https://doi.org/10.1109/ICRA.2016.7487576
  27. 27.
    Zhang, K., et al.: Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots. J. Field Robot.  https://doi.org/10.1002/rob.21840

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Queen Mary University of LondonLondonUK

Personalised recommendations