Skip to main content

Bifurcation Analysis for Polynomial Equations

  • Chapter
  • First Online:
Stability of Axially Moving Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 259))

  • 398 Accesses

Abstract

This chapter is devoted to bifurcation problems based on some models described by polynomial equations with real coefficients. Bifurcation analysis, parametric representations of solutions and their asymptotic analysis and expressions are described within a framework of analytical approaches. The results presented in this chapter can be used to help locate the bifurcation points of the solution curves. The results also allow the development of very efficient procedures for sensitivity analysis of the dependences of solutions on the problem parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banichuk NV, Barsuk AA (1982) On stability of torsioned elastic rods. Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela (MTT), vol 6, pp 148–154 (in Russian)

    Google Scholar 

  2. Banichuk NV, Bratus AS, Mishkis AD (1987) Analysis of stabilizing and destabilizing effects of small damping in nonconservative systems with finite numbers of degrees of freedom. Technical report, Institute for Problems in Mechanics AN USSR. Reprint no. 312 (in Russian)

    Google Scholar 

  3. Banichuk NV (1978) Minimization of the weight of a wing with constraints on the velocity of divergence. Scientific Notes of the Central Aerohydrodynamic Institute (TsAGI), vol 9, no 5 (in Russian)

    Google Scholar 

  4. Banichuk NV (1990) Introduction to optimization of structures. Springer, New York, 300 pages

    Chapter  Google Scholar 

  5. Banichuk VV (1983) Problems and methods of optimal structural design. Plenum Press, New York, 313 pages

    Chapter  Google Scholar 

  6. Banichuk NV, Gura NM (1979) On a dynamic problem of optimal design. Mech Deform Solid Bodies 41:20–24

    Google Scholar 

  7. Banichuk NV, Bratus AS, Mishkis AD (1989) On destabilizing action on nonconservative systems of small dissipative forces. Rep USSR Acad Sci 309(6):1325–1327 (in Russian)

    Google Scholar 

  8. Banichuk N, Jeronen J, Saksa T, Tuovinen T (2011) Static instability analysis of an elastic band travelling in the gravitational field. Rakenteiden mekaniikka (Finn J Struct Mech) 44(3):172–185

    Google Scholar 

  9. Banichuk N, Jeronen J, Neittaanmäki P, Saksa T, Tuovinen T (2013) Theoretical study on travelling web dynamics and instability under non-homogeneous tension. Int J Mech Sci 66C:132–140. https://doi.org/10.1016/j.ijmecsci.2012.10.014

    Article  Google Scholar 

  10. Banichuk N, Kurki M, Neittaanmäki P, Saksa T, Tirronen M, Tuovinen T (2013) Optimization and analysis of processes with moving materials subjected to fatigue fracture and instability. Mech Based Design Struct Mach Int J 41(2):146–167. https://doi.org/10.1080/15397734.2012.708630

    Article  Google Scholar 

  11. Banichuk N, Jeronen J, Ivanova S, Tuovinen T (2015) Analytical approach for the problems of dynamics and stability of a moving web. Rakenteiden mekaniikka (J Struct Mech) 48(3):136–163

    Google Scholar 

  12. Banichuk N, Jeronen J, Kurki M, Neittaanmäki P, Saksa T, Tuovinen T (2011) On the limit velocity and buckling phenomena of axially moving orthotropic membranes and plates. Int J Solids Struct 48(13):2015–2025. ISSN 0020-7683. https://doi.org/10.1016/j.ijsolstr.2011.03.010

    Article  Google Scholar 

  13. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T (2011) Dynamic behaviour of an axially moving plate undergoing small cylindrical deformation submerged in axially flowing ideal fluid. J Fluids Struct 27(7):986–1005. ISSN 0889-9746. https://doi.org/10.1016/j.jfluidstructs.2011.07.004

    Article  Google Scholar 

  14. Banichuk N, Jeronen J, Neittaanmäki P, Tuovinen T, Saksa T (2010) Theoretical study on travelling web dynamics and instability under a linear tension distribution. Technical Report B1/2010, University of Jyväskylä. Reports of the Department of Mathematical Information Technology. B: Scientific Computing

    Google Scholar 

  15. Bolotin VV (1961) Nonconservative problems of the theory of elastic stability. Fizmatgiz, Moscow, 339 pages (in Russian)

    Google Scholar 

  16. Bolotin VV (1964) The dynamic stability of elastic systems. Holden-Day, Inc. Translated from the Russian (1956) and German (1961) editions

    Google Scholar 

  17. Bolotin VV (1969) Statistical methods in structural mechanics. Holden-Day Inc

    Google Scholar 

  18. Bolotin VV (1973) Variational principles in theory of elastic stability. In Problems in mechanics of solid deformable bodies, Moscow, pp 83–88. Sudostroenie

    Google Scholar 

  19. Bolotin VV (1995) Dynamic stability of structures. In Kounadis AN, Krätzig WB (eds) Nonlinear stability of structures. CISM, vol 342. Springer, pp 3–72. https://doi.org/10.1007/978-3-7091-4346-9

    MATH  Google Scholar 

  20. Bolotin VV (1956) Dynamic stability of elastic systems. Gostekhizdat, Moscow

    Google Scholar 

  21. Jeronen J (2011) On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid: a study into paper production in mathematical terms. PhD thesis, Department of Mathematical Information Technology, University of Jyväskylä. http://urn.fi/URN:ISBN:978-951-39-4596-1. Jyväskylä studies in computing 148. ISBN 978-951-39-4595-4 (book), ISBN 978-951-39-4596-1 (PDF)

  22. Larichev AD (1981) Finding a minimum volume for a beam on an elastic foundation, for a given magnitude of a critical load. In Applied and theoretical research into building structures, Moscow, pp 19–25. Kucherenko TsNIINSK (in Russian)

    Google Scholar 

  23. Mote CD (1968) Divergence buckling of an edge-loaded axially moving band. Int J Mech Sci 10:281–295. https://doi.org/10.1016/0020-7403(68)90013-1

    Article  Google Scholar 

  24. Mote CD (1968) Dynamic stability of an axially moving band. J Frankl Inst 285(5):329–346. https://doi.org/10.1016/0016-0032(68)90482-1

    Article  Google Scholar 

  25. Mote CD (1972) Dynamic stability of axially moving materials. Shock Vib Dig 4(4):2–11

    Article  Google Scholar 

  26. Mote CD (1975) Stability of systems transporting accelerating axially moving materials. ASME J Dyn Syst Meas Control 97:96–98. https://doi.org/10.1115/1.3426880

    Article  Google Scholar 

  27. Nečas J, Lehtonen A, Neittaanmäki P (1987) On the construction of Lusternik-Schnirelmann critical values with application to bifurcation problems. Appl Anal 25(4):253–268. https://doi.org/10.1080/00036818708839689

    Article  MathSciNet  MATH  Google Scholar 

  28. Neittaanmäki P, Ruotsalainen K (1985) On the numerical solution of the bifurcation problem for the sine-Gordon equation. Arab J Math 6(1 and 2)

    Google Scholar 

  29. Plaut RH (1972) Determining the nature of instability in nonconservative problems. AIAA J 10(2)

    Article  Google Scholar 

  30. Pramila A (1986) Sheet flutter and the interaction between sheet and air. TAPPI J 69(7):70–74

    Google Scholar 

  31. Pramila A (1987) Natural frequencies of a submerged axially moving band. J Sound Vib 113(1):198–203

    Article  Google Scholar 

  32. Saksa T, Banichuk N, Jeronen J, Kurki M, Tuovinen T (2012) Dynamic analysis for axially moving viscoelastic panels. Int J Solids Struct 49(23–24):3355–3366. https://doi.org/10.1016/j.ijsolstr.2012.07.017

    Article  Google Scholar 

  33. Saksa T, Jeronen J, Tuovinen T (2012) Stability of moving viscoelastic panels interacting with surrounding fluid. Rakenteiden mekaniikka (Finn J Struct Mech) 45(3):88–103

    Google Scholar 

  34. Saksa T, Banichuk N, Jeronen J, Kurki M, Tuovinen T (2013) Dynamic behaviour of a travelling viscoelastic band in contact with rollers. In Repin S, Tiihonen T, Tuovinen T (eds) Numerical methods for differential equations, optimization, and technological problems. Dedicated to Professor P. Neittaanmäki on his 60th Birthday. Computational methods in applied sciences, vol 27. Springer Netherlands, pp 393–408. ISBN: 978-94-007-5287-0 (Print) 978-94-007-5288-7 (Online)

    MATH  Google Scholar 

  35. Saksa T, Jeronen J, Banichuk N, Kurki M (2013) On travelling web stability including material viscoelasticity and surrounding air. In Anson SJI’ (ed) Advances in pulp and paper research, Cambridge 2013, vol 1. The Pulp & Paper Fundamental Research Society, pp 449–468. ISBN 978-0-9926163-0-4

    Google Scholar 

  36. Tuovinen T (2011) Analysis of stability of axially moving orthotropic membranes and plates with linear non-homogeneous tension profile. PhD thesis, Department of Mathematical Information Technology, University of Jyväskylä. http://urn.fi/URN:ISBN:978-951-39-4578-7. Jyväskylä studies in computing 147. ISBN 978-951-39-4577-0 (book), ISBN 978-951-39-4578-7 (PDF)

  37. Wickert JA, Mote CD (1988) Current research on the vibration and stability of axially-moving materials. Shock Vib Dig 20:3–13

    Article  Google Scholar 

  38. Wickert JA, Mote CD (1990) Classical vibration analysis of axially moving continua. ASME J Appl Mech 57:738–744. https://doi.org/10.1115/1.2897085

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Banichuk .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banichuk, N., Barsuk, A., Jeronen, J., Tuovinen, T., Neittaanmäki, P. (2020). Bifurcation Analysis for Polynomial Equations. In: Stability of Axially Moving Materials. Solid Mechanics and Its Applications, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-030-23803-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23803-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23802-5

  • Online ISBN: 978-3-030-23803-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics