Advertisement

Aging Monitors for SRAM Memory Cells and Sense Amplifiers

  • Helen-Maria Dounavi
  • Yiorgos Sfikas
  • Yiorgos TsiatouhasEmail author
Chapter
  • 330 Downloads

Abstract

Static random access memories (SRAMs) in nanometre technologies undergo reliability degradation due to the increased process variations but also due to various aging mechanisms. Bias temperature instability (BTI) and hot carrier injection (HCI) phenomena are highly accused of the aging-related reliability reduction. This degradation is getting worse under excess stress conditions (high operating temperature and voltage levels). Aging phenomena significantly affect the performance characteristics of SRAMs since they affect among others speed, operating voltages, memory cells’ noise margins and sense amplifiers’ input offset voltage. Excessive performance degradation due to aging in an SRAM will lead to failures generation. Traditionally, designers use guard bands; extra margins are considered to guarantee that the memory will operate correctly during its lifetime. However, this approach negatively influences the performance of the circuit since it affects speed, power consumption, area and possibly the yield. Thus, it is imperative to develop aging-tolerant design techniques that will provide the ability to sense aging levels, predict upcoming failures in the memory and early react to retain the reliable operation.

References

  1. 1.
    Agbo, I., Taouil, M., Kraak, D., Hamdioui, S., Kukner, H., Weckx, P., Raghavan, P., & Catthoor, F. (2017). Integral impact of BTI, PVT variation, and workload on SRAM sense amplifier. IEEE Transactions on VLSI Systems, 25(04), 1444–1454.CrossRefGoogle Scholar
  2. 2.
    Pae, S., Maiz, J., Prasad, C., & Woolery, B. (2008). Effect of BTI degradation on transistor variability in advanced semiconductor technologies. IEEE Transactions Device and Materials Reliability, 8(3), 519–525.CrossRefGoogle Scholar
  3. 3.
    Cacho, F., Singh, S. K., Singh, B., Partasarathy, C., Pion, E., Argoud, F., Federspiel, X., Pitolet, H., Roy, D., & Huard, V. (2011). Hot carrier injection degradation induced dispersion: model and circuit-level measurement. In IEEE international integration reliability workshop (pp. 137–141).Google Scholar
  4. 4.
    Dounavi, H-M., Sfikas, Y., & Tsiatouhas, Y. (2018). Aging monitoring in SRAM sense amplifiers. In International conference on modern circuits and systems technologies (MOCAST).Google Scholar
  5. 5.
    Kraak, D., Taouil, M., Agbo, I., Hamdioui, S., Weckx, P., Kukner, H., Cosemans, S., & Catthoor, F. (2017). Impact and mitigation of sense amplifier aging degradation using realistic workloads. IEEE Transactions on VLSI Systems, 25(12), 3464–3472.CrossRefGoogle Scholar
  6. 6.
    Kraak, D., Agbo, I., Taouil, M., Weckx, P., Cosemans, S., Catthoor, F., Dehaene, W., & Hamdioui, S. (2007). Mitigation of sense amplifier degradation using input switching. Design Automation and Test in Europe Conference (DATE) (pp. 858–863).Google Scholar
  7. 7.
    Kang, K., Alam, M. A., & Roy, K. (2007). Characterization of NBTI induced temporal performance degradation in nano-scale SRAM array using IDDQ. In IEEE international test conference (ITC) (p. 11.1).Google Scholar
  8. 8.
    Toh, S. O., Guo, Z., Liu, T.-J. K., & Nikolic, B. (2011). Characterization of dynamic SRAM stability in 45 nm CMOS. IEEE Journal of Solid-State Circuits, 46(11), 2702–2712.CrossRefGoogle Scholar
  9. 9.
    Ceratti, A., Copetti, T., Bolzani, L., Vargas, F., & Fagundes, R. (2014). An on-chip sensor to monitor NBTI effects in SRAMs. Springer Journal of Electronic Testing: Theory & Applications, 30, 159–169.CrossRefGoogle Scholar
  10. 10.
    Wang, X., Keane, J., Kim, T. T.-H., Jain, P., Tang, Q., & Kim, C. H. (2014). Silicon odometers: Compact in situ aging sensors for robust system design. IEEE Micro, 34(6), 74–85.CrossRefGoogle Scholar
  11. 11.
    Tsai, M-C., et al. (2012). Embedded SRAM ring oscillator for in-situ measurement of NBTI and PBTI degradation in CMOS 6T SRAM array. In International symposium on VLSI design, automation and test (VLSI-DAT).Google Scholar
  12. 12.
    Alorda, B., Carmona, C., Torrens, G., & Bota, S. (2016). On-line write margin estimator to monitor performance degradation in SRAM cores. In IEEE international symposium on on-line testing and robust system design (IOLTS) (pp. 90–95).Google Scholar
  13. 13.
    Huard, V., Partasarathy, C., Guerin, C., Valentin, T., Pion, E., Mammasse, M., Planes, N., & Camus, L. (2008). NBTI degradation: From transistor to SRAM arrays. In IEEE 46th annual international reliability physics symposium (PRS) (pp. 289–300).Google Scholar
  14. 14.
    Haggag, A., Anderson, G., Parihar, S., Burnett, D., Abeln, G., Higman, J., & Moosa, M. (2007). Understanding SRAM high-temperature-operating-life NBTI: Statistics and permanent vs recoverable damage. In IEEE 45th annual international reliability physics symposium (PRS) (pp. 452–456).Google Scholar
  15. 15.
    Tsiatouhas, Y. (2017). Periodic bias-temperature instability monitoring in SRAM cells. In IEEE European test symposium (ETS).Google Scholar
  16. 16.
    Ahmed, F., & Milor, L. (2016). Online measurement of degradation due to bias temperature instability in SRAMs. IEEE Transactions on VLSI Systems, 24(06), 2184–2194.CrossRefGoogle Scholar
  17. 17.
    Rahma, M., Chen, Y., Sy, W., Ong, W-L., Ting, L-Y., Yoon, S-S., Han, M., & Terzioglou, E. (2011). Characterization of SRAM sense amplifier input offset for yield prediction in 28nm CMOS. In IEEE international custom integrated circuits conference (CICC).Google Scholar
  18. 18.
    Kumar, S. V., Kim, C. H., & Sapatnekar, S. S. (2006). Impact of NBTI on SRAM read stability and design for reliability. In 7th international symposium on quality electronic design (pp. 213–218).Google Scholar
  19. 19.
    Qin, J., Li, X., & Bernstein, J. B. (2007). SRAM stability analysis considering gate oxide SBD, NBTI and HCI. In International integrated reliability workshop (IRW) (pp. 33–37).Google Scholar
  20. 20.
    Liu, T., Chen, C-C., Wu, J., & Milor, L. (2016). SRAM stability analysis for different cache configurations due to bias temperature instability and hot carrier injection. In IEEE 34th international conference on computer design (ICCD) (pp. 225–232).Google Scholar
  21. 21.
    Khan, S., Agbo, I., Hamdioui, S., Kukner, H., Kaczer, B., Raghavan, P., & Catthoor, F. (2014). Bias temperature instability analysis of FinFET based SRAM cells. In Design and test in Europe conference (DATE).Google Scholar
  22. 22.
    Sfikas, Y., & Tsiatouhas, Y. (2017). BTI and HCI degradation detection in SRAM cells. In International conference on modern circuits and systems technologies (MOCAST).Google Scholar
  23. 23.
    Sfikas, Y., & Tsiatouhas, Y. (2017) Variation tolerant BTI monitoring in SRAM cells. In IEEE international symposium on on-line testing and robust system design (IOLTS) (pp. 100–105).Google Scholar
  24. 24.
    Agbo, I., Taouil, M., Hamdioui, S., Weckx, P., Cosemans, S., Raghavan, P., Catthoor, F., & Dehaene, W. (2016). Quantification of sense amplifier offset voltage degradation due to zero- and run-time variability. In IEEE computer society annual symposium on VLSI (ISVLSI) (pp. 725–730).Google Scholar
  25. 25.
    Kinseher, J., Heib, L., & Polian, I. (2017). Analyzing the effects of peripheral circuit aging of embedded SRAM architectures. In Design automation and test in Europe conference (DATE) (pp. 852–867).Google Scholar
  26. 26.
    Seevinck, E., List, F. J., & Lohstroh, J. (1987). Static-noise margin analysis of MOS SRAM cells. IEEE Journal of Solid-State Circuits, 22(5), 748–754.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Helen-Maria Dounavi
    • 1
  • Yiorgos Sfikas
    • 1
  • Yiorgos Tsiatouhas
    • 1
    Email author
  1. 1.Department of Computer Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations