On-Chip Ageing Monitoring and System Adaptation

  • Lorena Anghel
  • Florian Cacho
  • Riddhi Jitendrakumar Shah


Process, voltage, temperature and ageing variations have become important issues in nanometre technology nodes, and thus on-chip accurate reliability and performance monitors have become necessary for adaptive compensation schemes. This chapter presents up-to-date state-of-the-art performance and reliability monitors, insertion methodology and experimental results of different monitors used for process and environment variations as well as ageing compensation. Voltage and frequency scaling techniques are combined with monitors to ensure fault-free operation. Measurements and simulations were performed on large sample sets for varied range of process, voltages, temperatures and ageing to argument on the choice of paths to be monitored and to illustrate adaptive compensation techniques.


  1. 1.
    Intel. (2017, October). A guide to the internet of things infographic,
  2. 2.
    Semiconductor Industry Association (SIA) and Semiconductor Research Corporation (SRC). (2015, September). Rebooting the IT revolution: A call to action. Technical report.Google Scholar
  3. 3.
    Kiamehr, S., Tahoori, M., & Anghel, L. (August 2017). Manufacturing threats. In Dependable multicore architectures at nanoscale (pp. 3–35). Cham: Springer. Scholar
  4. 4.
    Huard, V. et al. (2014). Adaptative wear out management with in-situ management In: International reliability physics symposium (IRPS 2014) (pp. 6B.4.1–6B.4.11).Google Scholar
  5. 5.
    Anghel, L., Benhassain, A., & Sivadasan, A. (2016, April 25–27). Early system failure prediction by using ageing in situ monitors: Methodology of implementation and application results. IEEE 34th VLSI test symposium (VTS’16), Las Vegas, NE, doi:
  6. 6.
    Taylor, S., et al. (2012). Power7+: Ibm’s next generation power microprocessor. In Hot chips (Vol. 24).
  7. 7.
    Cacho, F., Benhassain, A., Shah, R., Mhira, S., Huard, V., & Anghel, L. (2017). Investigation of critical path selection for in-situ monitors insertion.In: IEEE international on line testing symposium.Google Scholar
  8. 8.
    Garros, X., Besson, P., Reimbold, G., Loup, V., Salvetat, T., Rochat, N., Lhostis, S., & Boulanger, F. (2008). Impact of crystallinity of high-k oxides on vt instabilities of nmos devices assessed by physical and electrical measurements. IEEE international reliability physics symposium,
  9. 9.
    Bhardwaj, S., Wang, W., Vattikonda, R., Cao, Y., & Vrudhula, V. S. (2006). Predictive modeling of the nbti effect for reliable design. In: Custom integrated circuits conference, 2006. CICC’06. IEEE (pp. 189–192). IEEE.Google Scholar
  10. 10.
    Naphade, T., Goel N., Nair, P. R., & Mahapatra, S. (2013). Investigation of stochastic implementation of reaction diffusion (RD) models for nbti related interface trap generation. In: Reliability physics symposium (IRPS 2013), 2013 IEEE international (p. XT–5). IEEE.Google Scholar
  11. 11.
    Denais, M., Parthasarathy, C., Ribes, G., Rey-Tauriac, Y., Revil, N., Bravaix A., Huard, V., & Perrier, F. (2004, December). On-the- characterization of NBTI in ultra-thin gate oxide pmosfet’s. In: Electron devices meeting, 2004. IEDM technical digest. IEEE international (pp. 109–112).Google Scholar
  12. 12.
    Huard, V., Parthasarathy, C., Guerin, C., Valentin, T., Pion, E., Mammasse, M., Planes, N., & Amus, L. C. (2008). Nbti degradation: From transistor to sram arrays. In Reliability physics symposium, 2008. IRPS 2008. IEEE international (pp. 289–300). IEEE.Google Scholar
  13. 13.
    Kaczer, B., Grasser, T., Roussel, P. J., Franco, J., Degraeve, R., Ragnarsson, L-A., Simoen, E., Groeseneken, G., & Reisinger, H. (2010). Origin of nbti variability in deeply scaled pfets. In Reliability physics symposium (IRPS), 2010 IEEE international (pp. 26–32). IEEE.Google Scholar
  14. 14.
    Cacho, F., Piriou, E., Heron, O., & Huard, V. (2015). Simulation framework for optimizing SRAM power consumption under reliability constraint, median workshop.Google Scholar
  15. 15.
    Reddy, V., Carulli, J. M., Krishnan, A. T., Bosch, W., & Burgess, B. (2004). Impact of negative bias temperature instability on product parametric drift. In International test conference (ITC) (pp. 148–155). Citeseer.Google Scholar
  16. 16.
    Weckx, P., Kaczer, B., Toledano-Luque, M., Grasser, T., Roussel, P., Kukner, H., Raghavan, P., Catthoor, F., & Groeseneken, G. (2013) Defect-based methodology for workload-dependent circuit lifetime projections-application to sram. In: Reliability physics symposium (IRPS), 2013 IEEE international (pp. 3A–4). IEEE.Google Scholar
  17. 17.
    Chen, K.-L., Saller, S. A., Groves, I. A., & Scott, D. B. (1985). Reliability effects on mos transistors due to hot-carrier injection. Solid-State Circuits, IEEE Journal of, 20(1), 306–313.CrossRefGoogle Scholar
  18. 18.
    Cacho, F., Mora, P., Arfaoui, W., Federspiel, X., & Huard, V. (2014). HCI/BTI coupled model: the path for accurate and predictive reliability simulations. In: Reliability physics symposium, 2014 IEEE international (pp. 5D–4). IEEE.Google Scholar
  19. 19.
    Shah, R., Cacho, F., Arora, D., Mhira, S., Huard, V., & Anghel, L. (2018). Investigation of accuracy of speed sensors for process and ageing compensation. IEEE international reliability physics symposium,
  20. 20.
    Burd, T. D., Pering, T. A., Stratakos, A. J., & Brodersen, R. W. (2000). A dynamic voltage scaled microprocessor system. IEEE Journal of Solid-State Circuits, 35(11), 1571–1580.CrossRefGoogle Scholar
  21. 21.
    Kuroda, T., Suzuki, K., Mita, S., Fujita, T., Yamane, F., Sano, F., Chiba, A., Watanabe, Y., & Matsuda, K. (1998). Takeo Maeda, and others. Variable supply-voltage scheme for low-power high-speed CMOS digital design. IEEE Journal of Solid-State Circuits, 33(3), 454–462.CrossRefGoogle Scholar
  22. 22.
    Cho, M., Kim, S. T., Tokunaga, C., Augustine, C., Kulkarni, J. P., Ravichandran, K., Tschanz, J. W., Khellah, M. M., & De, V. (2017). Postsilicon voltage guard-band reduction in a 22 nm graphics execution core using adaptive voltage scaling and dynamic power gating. IEEE Journal of Solid-State Circuits, 52, 50.CrossRefGoogle Scholar
  23. 23.
    Ernst, D., Kim, N. S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D., Austin, T., Flautner, K., & Mudge, T. (2003). Razor: a low-power pipeline based on circuit-level timing speculation. In: Proceedings 36th annual IEEE/ACM international symposium on microarchitecture. MICRO-36.Google Scholar
  24. 24.
    Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D. M., & Blaauw, D. T. (2009). RazorII: In situ error detection and correction for PVT and SER tolerance. IEEE Journal of Solid-State Circuits, 44(1), 32–48.CrossRefGoogle Scholar
  25. 25.
    Bowman, K. A., Tschanz, J. W., Kim, N. S., Lee, J. C., Wilkerson, C. B., Lu, S. L., Karnik, T., & De, V. K. (2008). Energy-efficient and metastability-immune timing-error detection and recovery circuits for dynamic variation tolerance. In: 2008 IEEE international conference on integrated circuit design and technology and tutorial.Google Scholar
  26. 26.
    Shah, R. et al. (2018). Ageing investigation of digital circuits using in-situ monitor. In Proceedings of 2018 IEEE international reliability workshop, Stanford sierra conference center, Fallen Leaf Lake, CA, USA.Google Scholar
  27. 27.
    Nicolaidis, M.. (1999, Apr). Time redundancy based soft-error tolerant circuits to rescue very deep submicron. In: Proceedings of 17th IEEE VLSI test symposium (pp. 86–94), Dana Point, CA.Google Scholar
  28. 28.
    Keane, J., Wang, X., Persaud, D., & Kim, C. H. (2010). An all-in-one silicon odometer for separately monitoring HCI, BTI, and TDDB. IEEE Journal of Solid-State Circuits, 45(4), 817–829.CrossRefGoogle Scholar
  29. 29.
    Kim, T. T. H., Lu, P. F., Jenkins, K. A., & Kim, C. H. (2015). A ring-oscillator-based reliability monitor for isolated measurement of NBTI and PBTI in high-k/metal gate technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23, 1360–1364.CrossRefGoogle Scholar
  30. 30.
    Zhao, Y., & Kerkhoff, H. G. (2016). Highly dependable multi-processor SoCs employing lifetime prediction based on health monitors. In: 2016 IEEE 25th Asian test symposium (ATS).Google Scholar
  31. 31.
    Harada, R., Mitsuyama, Y., Hashimoto, M., & Onoye, T. (2010). Measurement circuits for acquiring SET pulse width distribution with sub-FO1- inverter-delay resolution. In: 11th international symposium on quality electronic design (ISQED). ISQED.Google Scholar
  32. 32.
    Wang, W. et al. (2007, Nov). An efficient method to identify critical gates under circuit ageing. In: Proceedings of ICCAD (pp. 735–740).Google Scholar
  33. 33.
    Benhassain, A., Mhira, S., Cacho, F., Huard, V., & Anghel, L. (2016). In-situ slack monitors: taking up the challenge of on-die monitoring of variability and reliability.In: 2016 1st IEEE international verification and security workshop (IVSW).Google Scholar
  34. 34.
    Sivadasan, A., Cacho, F., Benhassain, S. A., Huard, V., & Anghel, L. (2016). Study of workload impact on BTI HCI induced ageing of digital circuits. In: Proceedings of the 2016 conference on design, automation & test in Europe, San Jose, CA.Google Scholar
  35. 35.
    Portolan, M. (2016). A novel test generation and application flow for functional access to IEEE 1687 instruments. In: 2016 21th IEEE European test symposium (ETS).Google Scholar
  36. 36.
    Von Kaenel, V., Macken, P., & Degrauwe, M. G. R. (October 1990). A voltage reduction technique for battery-operated systems. IEEE Journal of Solid-State Circuits, 25(5), 1136–1140.CrossRefGoogle Scholar
  37. 37.
    Niessen, C., & Van, B. C. H. (1993, June). An apparatus featuring a feedback signal for controlling a powering voltage for asynchronous electronic circuitry therein. European Patent Office, EP0549052B1.Google Scholar
  38. 38.
    Nielsen, L. S., Niessen, C., Sparso, J., & Van Berkel, K. (1994). Low-power operation using self-timed circuits and adaptive scaling of the supply voltage. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(4), 391–397.CrossRefGoogle Scholar
  39. 39.
    Calhoun, B. H., & Chandrakasan, A. P. (January 2006). Ultra-Dynamic Voltage Scaling (UDVS) using sub-threshold operation and local voltage dithering. IEEE Journal of Solid-State Circuits, 41(1), 238–245.CrossRefGoogle Scholar
  40. 40.
    Miro-Panades, I., Beigne, E., Thonnart, Y., Alacoque, L., Vivet, P., Lesecq, S., Puschini, D., Molnos, A., Thabet, F., Tain, B., Chehida, K. B., Engels, S., Wilson, R., & Fuin, D. (July 2014). A fine-grain variation-aware dynamic Vdd-hopping AVFS architecture on a 32 nm GALS MPSoC. IEEE Journal of Solid-State Circuits, 49(7), 1475–1486.CrossRefGoogle Scholar
  41. 41.
    Albea, C., Puschini, D., Lesecq, S., & Beigné, E. (2011). Optimal and robust control for a small-area FLL. In: Control & automation (MED), 2011 19th mediterranean conference on (pp. 1100–1105). IEEE.Google Scholar
  42. 42.
    Benhassain, A., Cacho, F., Huard, V., Saliva, M., Anghel, L., Parthasarathy, C., Jain, A., & Giner, F. (2015). Timing in-situ monitors: Implementation strategy and applications results. In: 2015 IEEE custom integrated circuits conference (CICC).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lorena Anghel
    • 1
  • Florian Cacho
    • 2
  • Riddhi Jitendrakumar Shah
    • 1
    • 2
  1. 1.University Grenoble Alpes, CNRS, TIMA LaboratoryGrenobleFrance
  2. 2.STMicroelectronics CrollesGrenobleFrance

Personalised recommendations