Personalized Neo-Epitope Vaccines for Cancer Treatment

  • Mathias Vormehr
  • Mustafa Diken
  • Özlem Türeci
  • Ugur Sahin
  • Sebastian KreiterEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 214)


After more than a century of efforts to establish cancer immunotherapy in clinical practice, the advent of checkpoint inhibition (CPI) therapy was a critical breakthrough toward this direction (Hodi et al. in Cell Rep 13(2):412–424, 2010; Wolchok et al. in N Engl J Med 369(2):122–133, 2013; Herbst et al. in Nature 515(7528):563–567, 2014; Tumeh et al. in Nature 515(7528):568–571, 2014). Further, CPIs shifted the focus from long studied shared tumor-associated antigens to mutated ones. As cancer is caused by mutations in somatic cells, the concept to utilize these correlates of ‘foreignness’ to enable recognition and lysis of the cancer cell by T cell immunity seems an obvious thing to do.


  1. Abelin JG et al (2017) Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46(2):315–326PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arnold PY et al (2002) The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol (Baltimore, Md.: 1950) 169(2):739–749PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baghdadi M et al (2013) Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol Immunother: CII 62(4):629–637PubMedCrossRefPubMedCentralGoogle Scholar
  5. Balachandran VP et al (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. NatureGoogle Scholar
  6. Bartkowiak T et al (2015) Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci USA 112(38):E5290–E5299PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bassani-Sternberg M et al (2015) Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics: MCP 14(3):658–673PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bosch GJ et al (1996) Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 88(9):3522–3527PubMedPubMedCentralGoogle Scholar
  9. Britten CM et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31(10):880–882PubMedCrossRefPubMedCentralGoogle Scholar
  10. Carreno BM et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science (New York, N.Y.) 348(6236):803–808PubMedPubMedCentralCrossRefGoogle Scholar
  11. Castle JC et al (2012) Exploiting the mutanome for tumor vaccination. Can Res 72(5):1081–1091CrossRefGoogle Scholar
  12. Christinck ER et al (1991) Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352(6330):67–70PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cohen AD et al (2006) Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Can Res 66(9):4904–4912CrossRefGoogle Scholar
  14. Corrales L et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11(7):1018–1030PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coulie PG et al (1995) A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci USA 92(17):7976–7980PubMedCrossRefPubMedCentralGoogle Scholar
  16. Deng L et al (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):543–852PubMedPubMedCentralCrossRefGoogle Scholar
  17. Duan F et al (2014) Genomic and bio-informatic profiling of mutational neo-epitopes reveals new rules to predict anti-cancer immunogenicity. J Exp Med 211(11):2231–2248PubMedPubMedCentralCrossRefGoogle Scholar
  18. Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Can Res 13(12):835–837Google Scholar
  19. Galluzzi L et al (2016) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol, Oct 17, p.Epub ahead of printGoogle Scholar
  20. Ganss R et al (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Can Res 62:1462–1470Google Scholar
  21. Gjertsen M, Breivik J, Saeterdal I (1995) Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346(8987):1399–1400PubMedCrossRefPubMedCentralGoogle Scholar
  22. Grosso JF et al (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Investig 117(11):3383–3392PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gubin MM et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  25. Harndahl M et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42(6):1405–1416PubMedCrossRefPubMedCentralGoogle Scholar
  26. Herbst RS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med 363(8):711–723PubMedCrossRefPubMedCentralGoogle Scholar
  28. Holmgaard RB et al (2015) Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 13(2):412–424PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hoof I et al (2009) NetMHCpan, a method for MHC class i binding prediction beyond humans. Immunogenetics 61(1):1–13PubMedCrossRefPubMedCentralGoogle Scholar
  30. Houbiers JG et al (1993) In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. Eur J Immunol 23(9):2072–2077PubMedCrossRefPubMedCentralGoogle Scholar
  31. Iida N et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science (New York, N.Y.) 342(6161):967–970PubMedPubMedCentralCrossRefGoogle Scholar
  32. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353PubMedPubMedCentralCrossRefGoogle Scholar
  33. Johanns TM et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jørgensen KW et al (2014) NetMHCstab—predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141(1):18–26PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kesmir C et al (2002) Prediction of proteasome cleavage motifs by neural networks. Protein Eng 15(4):287–296PubMedCrossRefPubMedCentralGoogle Scholar
  36. Klein G et al (1960) Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Can Res 20:1561–1572Google Scholar
  37. Klug F et al (2013) Low-Dose Irradiation Programs Macrophage Differentiation to an iNOS(+)/M1 Phenotype that Orchestrates Effective T Cell Immunotherapy. Cancer Cell 24(5):589–602PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kreiter S et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7549):692–696PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kurts C et al (1998) Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J Exp Med 188(2):409–414PubMedPubMedCentralCrossRefGoogle Scholar
  40. Landais E et al (2009) New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation. J Immunol 183(12):7949–7957PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lee M et al (2014) Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells. Arch Pharmacal Res 37(9):1234–1240CrossRefGoogle Scholar
  42. Lennerz V et al (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102(44):16013–16018PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lethe B et al (1997) MAGE-1 expression threshold for the lysis of melanoma cell lines by a specific cytotoxic T lymphocyte. Melanoma Res 7(Suppl 2):S83–S88PubMedPubMedCentralGoogle Scholar
  44. Linch SN et al (2016) Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proc Natl Acad Sci USA 113(3):E319–E327PubMedCrossRefPubMedCentralGoogle Scholar
  45. Łuksza M et al (2017) A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. NatureGoogle Scholar
  46. Lurquin C et al (1989) Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 58(2):293–303PubMedCrossRefPubMedCentralGoogle Scholar
  47. Manrique SZ et al (2016) Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists. Oncotarget 7(28):42919–42942PubMedPubMedCentralCrossRefGoogle Scholar
  48. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380PubMedPubMedCentralCrossRefGoogle Scholar
  49. Marty R et al (2017) MHC-I genotype restricts the oncogenic mutational landscape. Cell, 1–12Google Scholar
  50. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404PubMedPubMedCentralCrossRefGoogle Scholar
  51. Matsuzaki J et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 107(17):7875–7880PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mcgranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (New York, N.Y.) 351(6280):1463–1469Google Scholar
  53. Mohan JF, Petzold SJ, Unanue ER (2011) Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J Exp Med 208(12):2375–2383. Available at: Scholar
  54. Moynihan KD et al (2016) Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 22(12):1402–1410PubMedPubMedCentralCrossRefGoogle Scholar
  55. Nathanson T et al (2016) Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res, Dec 12, p.Epub ahead of printGoogle Scholar
  56. Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. NatureGoogle Scholar
  57. Pauken KE et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science (New York, N.Y.) 354(6316):1160–1165Google Scholar
  58. Peters B et al (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunology (Baltimore, Md. : 1950) 171(4):1741–1749PubMedCrossRefPubMedCentralGoogle Scholar
  59. Pfirschke C et al (2016) Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44(2):343–354PubMedPubMedCentralCrossRefGoogle Scholar
  60. Popp MW-L, Maquat LE (2013) Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165PubMedPubMedCentralCrossRefGoogle Scholar
  61. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18(6):769–778PubMedPubMedCentralGoogle Scholar
  62. Rasmussen M et al (2016) Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. Journal of immunology (Baltimore, Md. : 1950) 197(4):1517–1524PubMedCrossRefPubMedCentralGoogle Scholar
  63. Rizvi NA et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, N.Y.) 348(6230):124–128Google Scholar
  64. Robbins PF et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752PubMedPubMedCentralCrossRefGoogle Scholar
  65. Routy B et al (2017) Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science (New York, N.Y.) 3706(November), p.eaan3706Google Scholar
  66. Sahin U et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226PubMedCrossRefPubMedCentralGoogle Scholar
  67. Sakuishi K et al (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194PubMedPubMedCentralCrossRefGoogle Scholar
  68. Saric T et al (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3(12):1169–1176PubMedCrossRefPubMedCentralGoogle Scholar
  69. Schwanhäusser B et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sharma MD et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113(24):6102–6111PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science (New York, N.Y.) 309(5741):1728–1732PubMedCrossRefPubMedCentralGoogle Scholar
  72. Shukla SA et al (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nature Biotechnol 33(11):1152–1158PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sibille C et al (1990) Structure of the gene of tum- transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 172(1):35–45PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sistigu A et al (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11)Google Scholar
  75. Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science (New York, N.Y.) 350(6264):1084–1089PubMedPubMedCentralCrossRefGoogle Scholar
  76. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199PubMedPubMedCentralCrossRefGoogle Scholar
  77. Somasundaram R et al (2006) Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Can Res 66:3287–3293CrossRefGoogle Scholar
  78. Takaku S et al (2010) Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer 126(7):1666–1674PubMedPubMedCentralGoogle Scholar
  79. Tenzer S et al (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62(9):1025–1037PubMedCrossRefPubMedCentralGoogle Scholar
  80. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571PubMedPubMedCentralCrossRefGoogle Scholar
  81. Türeci O et al (2016) Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin Cancer Res 22(8):1885–1896PubMedCrossRefPubMedCentralGoogle Scholar
  82. Van Allen EM et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (New York, N.Y.) 350(6257):207–211PubMedPubMedCentralCrossRefGoogle Scholar
  83. van der Burg SH et al (1996) Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 156(9):3308–3314PubMedPubMedCentralGoogle Scholar
  84. Van Rooij N et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442PubMedCrossRefPubMedCentralGoogle Scholar
  85. Verdegaal EME et al (2016) Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature 536(7614):91–95PubMedCrossRefPubMedCentralGoogle Scholar
  86. Vétizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (New York, N.Y.) 350(6264):1079–1084Google Scholar
  87. Vita R et al (2014) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(D1):D405–D412PubMedPubMedCentralCrossRefGoogle Scholar
  88. Vormehr M et al (2015) Mutanome engineered RNA immunotherapy : towards patient-centered tumor vaccination. J Immunol Res Article ID 595363:6Google Scholar
  89. Vormehr M et al (2016) Mutanome directed cancer immunotherapy. Curr Opin Immunol 39:14–22PubMedCrossRefPubMedCentralGoogle Scholar
  90. Wang RF et al (1999) Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science (New York, N.Y.) 284(5418):1351–1354Google Scholar
  91. Wang S et al (2016) Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci USA 113(46):E7240–E7249PubMedCrossRefPubMedCentralGoogle Scholar
  92. Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wölfel T et al (1995) A p 16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (New York, N.Y.) 269(5228):1281–1284Google Scholar
  94. Woller N et al (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther: The Journal of the American Society of Gene Therapy 10:1630–1640CrossRefGoogle Scholar
  95. Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576PubMedCrossRefPubMedCentralGoogle Scholar
  96. Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mathias Vormehr
    • 1
    • 2
  • Mustafa Diken
    • 1
    • 3
  • Özlem Türeci
    • 1
    • 4
  • Ugur Sahin
    • 1
    • 2
    • 3
  • Sebastian Kreiter
    • 1
    • 3
    Email author
  1. 1.BioNTech RNA Pharmaceuticals GmbHMainzGermany
  2. 2.University Medical Center of the Johannes Gutenberg UniversityMainzGermany
  3. 3.TRON—Translational Oncology at the University Medical Center, Johannes Gutenberg University gGmbHMainzGermany
  4. 4.CI3 Cluster for Individualized Immunointervention e.VMainzGermany

Personalised recommendations