Skip to main content

Advances and Challenges of CAR T Cells in Clinical Trials

  • Chapter
  • First Online:
Current Immunotherapeutic Strategies in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 214))

Abstract

As a specifically programmable, living immunotherapeutic drug, chimeric antigen receptor (CAR)-modified T cells are providing an alternative treatment option for a broad variety of diseases including so far refractory cancer. By recognizing a tumor-associated antigen, the CAR triggers an anti-tumor response of engineered patient’s T cells achieving lasting remissions in the treatment of leukemia and lymphoma. During the last years, significant progress was made in optimizing the CAR design, in manufacturing CAR-engineered T cells, and in the clinical management of patients showing promise to establish adoptive CAR T cell therapy as an effective treatment option in the forefront.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAR:

Chimeric antigen receptor

CRS:

Cytokine release syndrome

CTLA-4:

Cytotoxic T lymphocyte-associated antigen-4

EGFR:

Epithelial growth factor receptor

GMP:

Good manufacturing practice

IFN:

Interferon

Ig:

Immunoglobulin

IL:

Interleukin

MHC:

Major histocompatibility complex

PD-1:

Programmed cell death-1

scFv:

Single-chain fragment of variable region

TCR:

T cell receptor

References

  • Abken H (2017) Driving CARs on the highway to solid cancer: some considerations on the adoptive therapy with CAR T cells. Hum Gene Ther 28(11):1047–1060

    Article  CAS  PubMed  Google Scholar 

  • Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J et al (2014) Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6(261):261ra151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C et al (2015) Human epidermal growth factor receptor 2 (HER2)—specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol Off J Am Soc Clin Oncol 33(15):1688–1696

    Article  CAS  Google Scholar 

  • Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M et al (2009) 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer Immunol Immunother CII 58(12):1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Vallina L, Hawkins RE (1996) Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol 26(10):2304–2309

    Article  CAS  PubMed  Google Scholar 

  • Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120

    Article  CAS  PubMed  Google Scholar 

  • Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R et al (2014) HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood 124(5):822–826

    Article  CAS  PubMed  Google Scholar 

  • Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kämpgen E et al (2009) Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 16(5):596–604

    Article  CAS  PubMed  Google Scholar 

  • Boardman DA, Philippeos C, Fruhwirth GO, Ibrahim MAA, Hannen RF, Cooper D et al (2017) Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 17(4):931–943

    Article  CAS  PubMed  Google Scholar 

  • Boice M, Salloum D, Mourcin F, Sanghvi V, Amin R, Oricchio E et al (2016) Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell 167(2):405–418.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O (2007) Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol Baltim Md 1950 178(3):1505–1511

    Article  CAS  PubMed  Google Scholar 

  • Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Google Scholar 

  • Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE (2010) The optimal antigen response of chimeric antigen receptors harboring the CD3 transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol 184(12):6938–6949

    Article  CAS  PubMed  Google Scholar 

  • Brudno JN, Kochenderfer JN (2016) Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127(26):3321–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MO, Lee J-S, Ansén S, Neuberg D, Hodi FS, Murray AP et al (2007) Long-lived antitumor CD8+ lymphocytes for adoptive therapy generated using an artificial antigen-presenting cell. Clin Cancer Res Off J Am Assoc Cancer Res 13(6):1857–1867

    Article  CAS  Google Scholar 

  • Calcinotto A, Grioni M, Jachetti E, Curnis F, Mondino A, Parmiani G et al (2012) Targeting TNF-α to neoangiogenic vessels enhances lymphocyte infiltration in tumors and increases the therapeutic potential of immunotherapy. J Immunol Baltim Md 1950 188(6):2687–2694

    Article  CAS  PubMed  Google Scholar 

  • Cartellieri M, Feldmann A, Koristka S, Arndt C, Loff S, Ehninger A et al (2016) Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J 6(8):e458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES et al (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21(5):524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S et al (2015) Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 75(17):3505–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheadle EJ, Rothwell DG, Bridgeman JS, Sheard VE, Hawkins RE, Gilham DE (2012) Ligation of the CD2 co-stimulatory receptor enhances IL-2 production from first-generation chimeric antigen receptor T cells. Gene Ther 19(11):1114–1120

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Teachey DT, Pequignot E, Frey N, Porter D, Maude SL et al (2016) Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods

    Google Scholar 

  • Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR et al (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126(8):3130–3144

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA et al (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 120(11):3953–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15(8):1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski M, Abken H (2017) CAR T cells releasing IL-18 convert to T-bethigh FoxO1low effectors which exhibit augmented activity against advanced solid tumors. Cell Rep (in press)

    Google Scholar 

  • Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol Baltim Md 1950 173(12):7647–7653

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski M, Kopecky C, Hombach AA, Abken H (2011) IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17):5697–5706

    Article  CAS  PubMed  Google Scholar 

  • Chmielewski M, Hombach AA, Abken H (2014) Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 257(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL et al (2017) PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129(8):1039–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM et al (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother Hagerstown Md 1997 33(8):780–788

    Article  CAS  PubMed  Google Scholar 

  • Cretenet G, Clerc I, Matias M, Loisel S, Craveiro M, Oburoglu L et al (2016) Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Sci Rep 12(6):24129

    Article  CAS  Google Scholar 

  • Cruz CRY, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S et al (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui G, Staron MM, Gray SM, Ho P-C, Amezquita RA, Wu J et al (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161(4):750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran KJ, Seinstra BA, Nikhamin Y, Yeh R, Usachenko Y, van Leeuwen DG et al (2015) Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther J Am Soc Gene Ther 23(4):769–778

    Article  CAS  Google Scholar 

  • Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra25

    Google Scholar 

  • Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C et al (2002) A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther J Am Soc Gene Ther 5(6):788–797

    Article  CAS  Google Scholar 

  • Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE et al (2009) T lymphocytes coexpressing CCR207 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25):6392–6402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Stasi A, Tey S-K, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elinav E, Waks T, Eshhar Z (2008) Redirection of regulatory T cells with predetermined specificity for the treatment of experimental colitis in mice. Gastroenterology 134(7):2014–2024

    Article  PubMed  Google Scholar 

  • Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ et al (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353(6295):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faitschuk E, Nagy V, Hombach AA, Abken H (2016a) A dual chain chimeric antigen receptor (CAR) in the native antibody format for targeting immune cells towards cancer cells without the need of an scFv. Gene Ther

    Google Scholar 

  • Faitschuk E, Hombach AA, Frenzel LP, Wendtner C-M, Abken H (2016b) Chimeric antigen receptor T cells targeting Fc μ receptor selectively eliminate CLL cells while sparing healthy B cells. Blood

    Google Scholar 

  • Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5(215):215ra172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H et al (2017) Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell

    Google Scholar 

  • Finney HM, Lawson AD, Bebbington CR, Weir AN (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol Baltim Md 1950 161(6):2791–2797

    Google Scholar 

  • Foster AE, Mahendravada A, Shinners NP, Chang W-C, Crisostomo J, Lu A et al (2017) Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther J Am Soc Gene Ther 25(9):2176–2188

    Article  CAS  Google Scholar 

  • Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C, Mami-Chouaib F (2012) Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res 72(24):6325–6332

    Article  CAS  PubMed  Google Scholar 

  • Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777

    Article  CAS  PubMed  Google Scholar 

  • Full F, Lehner M, Thonn V, Goetz G, Scholz B, Kaufmann KB et al (2010) T cells engineered with a cytomegalovirus-specific chimeric immunoreceptor. J Virol 84(8):4083–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner R, Wu D, Cherian S, Fang M, Hanafi L-A, Finney O et al (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127(20):2406–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garfall AL, Maus MV, Hwang W-T, Lacey SF, Mahnke YD, Melenhorst JJ et al (2015) Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med 373(11):1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni L, Zhong X-S, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghassemi S, Nunez-Cruz S, O'Connor RS, Fraietta JA, Patel PR, Scholler J, Barrett DM, Lundh SM, Davis MM, Bedoya F, C Zhang, Leferovich J, Lacey SF, Levine BL, Grupp SA, June CH, Melenhorst JJ, Milone MC (2018) Reducing culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol Res 6(9):1100–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golumba-Nagy V, Kuehle J, Hombach AA, Abken H (2018) CD28-ζ CAR T cells resist TGF-β repression through IL-2 signaling, which can be mimicked by an engineered IL-7 autocrine loop. Mol Ther 26(9):2218–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS et al (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227

    Article  CAS  PubMed  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedan S, Chen X, Madar A, Carpenito C, McGettigan SE, Frigault MJ et al (2014) ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124(7):1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammill JA, VanSeggelen H, Helsen CW, Denisova GF, Evelegh C, Tantalo DGM et al (2015) Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors. J Immunother Cancer 3:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Han X, Cinay GE, Zhao Y, Guo Y, Zhang X, Wang P (2017) Adnectin-based design of chimeric antigen receptor for T cell engineering. Mol Ther J Am Soc Gene Ther 25(11):2466–2476

    Article  CAS  Google Scholar 

  • Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH et al (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121(7):1165–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC et al (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111(11):5326–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzinger A, Barden M, Abken H (2016) The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother CII

    Google Scholar 

  • Hombach A, Abken H (2007) Costimulation tunes tumor-specific activation of redirected T cells in adoptive immunotherapy. Cancer Immunol Immunother CII. 56(5):731–737

    Article  PubMed  Google Scholar 

  • Hombach AA, Abken H (2011) Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28-OX40 signalling. Int J Cancer 129(12):2935–2944

    Article  CAS  PubMed  Google Scholar 

  • Hombach A, Sent D, Schneider C, Heuser C, Koch D, Pohl C et al (2001) T-cell activation by recombinant receptors CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res 61(5):1976–1982

    CAS  PubMed  Google Scholar 

  • Hombach AA, Schildgen V, Heuser C, Finnern R, Gilham DE, Abken H (2007) T cell activation by antibody-like immunoreceptors: the position of the binding epitope within the target molecule determines the efficiency of activation of redirected T cells. J Immunol Baltim Md 1950 178(7):4650–4657

    Article  CAS  PubMed  Google Scholar 

  • Hombach A, Hombach AA, Abken H (2010) Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc “spacer” domain in the extracellular moiety of chimeric antigen receptors avoids “off-target” activation and unintended initiation of an innate immune response. Gene Ther 17(10):1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Hombach AA, Chmielewski M, Rappl G, Abken H (2013) Adoptive immunotherapy with redirected T cells produces CCR6− cells that are trapped in the periphery and benefit from combined CD28-OX40 costimulation. Hum Gene Ther 24(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J et al (2007) Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 109(12):5168–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Sun J, Wu Z, Yu J, Cui Q, Pu C et al (2016) Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol 9(1):70

    Google Scholar 

  • Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J et al (2017) Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep 20(13):3025–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini MT, Nishida T, Yamamoto TN et al (2010) The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 116(22):4532–4541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C et al (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3(2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Huenecke S, Zimmermann SY, Kloess S, Esser R, Brinkmann A, Tramsen L et al (2010) IL-2-driven regulation of NK cell receptors with regard to the distribution of CD16+ and CD16− subpopulations and in vivo influence after haploidentical NK cell infusion. J Immunother Hagerstown Md 1997 33(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Jena B, Maiti S, Huls H, Singh H, Lee DA, Champlin RE et al (2013) Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. PLoS ONE 8(3):e57838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, Wrzesinski C, Yu Z, Hu J, Gautam S, Hawk NV et al (2015) miR-155 augments CD8+ T-cell antitumor activity in lymphoreplete hosts by enhancing responsiveness to homeostatic γc cytokines. Proc Natl Acad Sci U S A 112(2):476–481

    Article  CAS  PubMed  Google Scholar 

  • John LB, Devaud C, Duong CPM, Yong CS, Beavis PA, Haynes NM et al (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res Off J Am Assoc Cancer Res 19(20):5636–5646

    Article  CAS  Google Scholar 

  • Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80

    Article  CAS  PubMed  Google Scholar 

  • Jyothi MD, Flavell RA, Geiger TL (2002) Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes. Nat Biotechnol 20(12):1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Kahlon KS, Brown C, Cooper LJN, Raubitschek A, Forman SJ, Jensen MC (2004) Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 64(24):9160–9166

    Article  CAS  PubMed  Google Scholar 

  • Kakarla S, Chow KKH, Mata M, Shaffer DR, Song X-T, Wu M-F et al (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther J Am Soc Gene Ther 21(8):1611–1620

    Article  CAS  Google Scholar 

  • Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G (2009) Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res Off J Am Assoc Cancer Res 15(14):4521–4528

    Article  CAS  Google Scholar 

  • Kaneko S, Mastaglio S, Bondanza A, Ponzoni M, Sanvito F, Aldrighetti L et al (2009) IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood 113(5):1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR et al (2015) Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res Off J Am Assoc Cancer Res 21(14):3149–3159

    Article  CAS  Google Scholar 

  • Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ et al (2016) Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther

    Google Scholar 

  • Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD et al (2016) Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T Cells. Immunity 44(2):380–390

    Article  CAS  PubMed  Google Scholar 

  • Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM et al (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13(16):1971–1980

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Ma JSY, Yun H, Cao Y, Kim JY, Chi V et al (2015) Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc 137(8):2832–2835

    Article  CAS  PubMed  Google Scholar 

  • Klebanoff CA, Gattinoni L, Restifo NP (2012) Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J Immunother Hagerstown Md 1997 35(9):651–660

    Article  CAS  PubMed  Google Scholar 

  • Klingemann H (2014) Are natural killer cells superior CAR drivers? Oncoimmunology 3:e28147

    Article  PubMed  PubMed Central  Google Scholar 

  • Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2012) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31(1):71–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobold S, Grassmann S, Chaloupka M, Lampert C, Wenk S, Kraus F et al (2015) Impact of a new fusion receptor on PD-1-mediated immunosuppression in adoptive T cell therapy. J Natl Cancer Inst 107(8)

    Google Scholar 

  • Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG et al (2013) Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122(25):4129–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochenderfer JN, Dudley ME, Kassim SH, Somerville RPT, Carpenter RO, Stetler-Stevenson M et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549

    Article  CAS  PubMed  Google Scholar 

  • Kofler DM, Chmielewski M, Rappl G, Hombach A, Riet T, Schmidt A et al (2011) CD28 costimulation Impairs the efficacy of a redirected t-cell antitumor attack in the presence of regulatory t cells which can be overcome by preventing Lck activation. Mol Ther J Am Soc Gene Ther 19(4):760–767

    Article  CAS  Google Scholar 

  • Köhl U, Arsenieva S, Holzinger A, Abken H (2018) CAR T cells in Trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum Gene Ther 29(5):559–568

    Article  PubMed  CAS  Google Scholar 

  • Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ (2015a) IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4(3):e994446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koneru M, O’Cearbhaill R, Pendharkar S, Spriggs DR, Brentjens RJ (2015b) A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med 28(13):102

    Article  CAS  Google Scholar 

  • Kong S, Sengupta S, Tyler B, Bais AJ, Ma Q, Doucette S et al (2012) Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin Cancer Res Off J Am Assoc Cancer Res 18(21):5949–5960

    Article  CAS  Google Scholar 

  • Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 17(7):10501

    Article  CAS  Google Scholar 

  • Krebs K, Böttinger N, Huang L-R, Chmielewski M, Arzberger S, Gasteiger G et al (2013) T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 145(2):456–465

    Article  CAS  PubMed  Google Scholar 

  • Krebs S, Chow KKH, Yi Z, Rodriguez-Cruz T, Hegde M, Gerken C et al (2014) T cells redirected to interleukin-13Rα2 with interleukin-13 mutein–chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Rα1. Cytotherapy 16(8):1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruschinski A, Moosmann A, Poschke I, Norell H, Chmielewski M, Seliger B et al (2008) Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proc Natl Acad Sci U S A 105(45):17481–17486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K, Davidoff AM et al (2014) T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res 74(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Kumaresan PR, Manuri PR, Albert ND, Maiti S, Singh H, Mi T et al (2014) Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A 111(29):10660–10665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunert A, Chmielewski M, Wijers R, Berrevoets C, Abken H, Debets R (2017) Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology (in press)

    Google Scholar 

  • Lamers CHJ, Sleijfer S, Vulto AG, Kruit WHJ, Kliffen M, Debets R et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol Off J Am Soc Clin Oncol 24(13):e20–e22

    Article  Google Scholar 

  • Lanitis E, Poussin M, Klattenhoff AW, Song D, Sandaltzopoulos R, June CH et al (2013) Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 1(1):43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124(2):188–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet Lond Engl 385(9967):517–528

    Article  CAS  Google Scholar 

  • Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol Baltim Md 1950 175(4):2261–2269

    Article  CAS  PubMed  Google Scholar 

  • Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M et al (2016) Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J Immunol Baltim Md 1950 196(2):759–766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC et al (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75(17):3596–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S et al (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76(6):1578–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD et al (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Garber HR, Lu S, He H, Tallis E, Ding X et al (2016) A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy 18(8):985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC et al (2016) Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 126(4):1413–1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackall CL, Miklos DB (2017) CNS endothelial cell activation emerges as a driver of CAR T cell-associated neurotoxicity. Cancer Discov 7(12):1371–1373

    Article  CAS  PubMed  Google Scholar 

  • Manuri PVR, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S et al (2010) piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther 21(4):427–437

    Article  CAS  PubMed  Google Scholar 

  • Mardiana S, John LB, Henderson MA, Slaney CY, von Scheidt B, Giuffrida L et al (2017) A multifunctional role for adjuvant anti-4-1BB therapy in augmenting antitumor response by chimeric antigen receptor T cells. Cancer Res 77(6):1296–1309

    Article  CAS  PubMed  Google Scholar 

  • Margalit A, Fishman S, Berko D, Engberg J, Gross G (2003) Chimeric beta2 microglobulin/CD3zeta polypeptides expressed in T cells convert MHC class I peptide ligands into T cell activation receptors: a potential tool for specific targeting of pathogenic CD8(+) T cells. Int Immunol 15(11):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Martyniszyn A, Krahl A-C, André MC, Hombach AA, Abken H (2017) CD20-CD19 bispecific CAR T cells for the treatment of B cell malignancies. Hum Gene Ther

    Google Scholar 

  • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014a) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maude SL, Barrett D, Teachey DT, Grupp SA (2014b) Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J Sudbury Mass 20(2):119–122

    Article  CAS  Google Scholar 

  • Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X et al (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1(1):26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM et al (2017) Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther J Am Soc Gene Ther 25(1):249–258

    Article  CAS  Google Scholar 

  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther J Am Soc Gene Ther 18(4):843–851

    Article  CAS  Google Scholar 

  • Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M et al (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164(4):780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newick K, O’Brien S, Sun J, Kapoor V, Maceyko S, Lo A et al (2016) Augmentation of CAR T cell trafficking and antitumor efficacy by blocking protein kinase A (PKA) localization. Cancer Immunol Res

    Google Scholar 

  • Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G et al (2015) Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125(25):3905–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyan F, Zimmermann K, Hardtke-Wolenski M, Knoefel A, Schulde E, Geffers R et al (2017) Prevention of Allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 17(4):917–930

    Article  CAS  Google Scholar 

  • O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9(399)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osborn MJ, Webber BR, Knipping F, Lonetree C, Tennis N, DeFeo AP et al (2016) Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther J Am Soc Gene Ther 24(3):570–581

    Article  CAS  Google Scholar 

  • Parente-Pereira AC, Burnet J, Ellison D, Foster J, Davies DM, van der Stegen S et al (2011) Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J Clin Immunol 31(4):710–718

    Article  CAS  PubMed  Google Scholar 

  • Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S et al (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460(7251):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M et al (2012) Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119(18):4133–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram HJ, Park JH, Brentjens RJ (2014) CD28z CARs and armored CARs. Cancer J Sudbury Mass 20(2):127–133

    Article  CAS  Google Scholar 

  • Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y, Zhang M et al (2010) Transduction of tumor-specific T cells with CXCR208 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res Off J Am Assoc Cancer Res 16(22):5458–5468

    Article  CAS  Google Scholar 

  • Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B et al (2014) Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res Off J Am Assoc Cancer Res 20(1):131–139

    Article  CAS  Google Scholar 

  • Philip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B et al (2014) A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124(8):1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32(1):79–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S et al (2015) Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res 75(18):3853–3864

    Article  CAS  PubMed  Google Scholar 

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA, Loren AW et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139

    Article  PubMed  PubMed Central  Google Scholar 

  • Posey AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B et al (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44(6):1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser ME, Brown CE, Shami AF, Forman SJ, Jensen MC (2012) Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol Immunol 51(3–4):263–272

    Article  CAS  PubMed  Google Scholar 

  • Provasi E, Genovese P, Lombardo A, Magnani Z, Liu P-Q, Reik A et al (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18(5):807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11):1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S et al (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374)

    Article  PubMed  Google Scholar 

  • Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH et al (2017a) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8(10):17002–17011

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017b) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res Off J Am Assoc Cancer Res 23(9):2255–2266

    Article  CAS  Google Scholar 

  • Riegler LL, Jones GP, Lee DW (2019) Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther Clin Risk Manag 15:323–335

    Google Scholar 

  • Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR et al (2016) Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci U S A 113(4):E459–E468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277(24):21123–21129

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109(4):1568–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeo C, Seed B (1991) Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64(5):1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS et al (2016a) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164(4):770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH et al (2016b) Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167(2):419–432.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J et al (2016a) Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 126(10):3814–3826

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q et al (2016b) The addition of the btk inhibitor ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res 22(11):2684–2696

    Article  CAS  Google Scholar 

  • Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, Klichinsky M, Shestova O, Patel PR, Kulikovskaya I, Nazimuddin F, Bhoj VG, Orlando EJ, Fry TJ, Bitter H, Maude SL, Levine BL, Nobles CL, Bushman FD, Young RM, Scholler J, Gill SL, June CH, Grupp SA, Lacey SF, Melenhorst JJ (2018) Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med 24(10):1499–1503

    Google Scholar 

  • Sabatino M, Hu J, Sommariva M, Gautam S, Fellowes V, Hocker JD et al (2016) Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128(4):519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT et al (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res Off J Am Assoc Cancer Res 20(4):972–984

    Article  CAS  Google Scholar 

  • Sautto GA, Wisskirchen K, Clementi N, Castelli M, Diotti RA, Graf J et al (2016) Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut 65(3):512–523

    Article  CAS  PubMed  Google Scholar 

  • Savoldo B, Rooney CM, Di Stasi A, Abken H, Hombach A, Foster AE et al (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110(7):2620–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönfeld K, Sahm C, Zhang C, Naundorf S, Brendel C, Odendahl M et al (2015) Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther J Am Soc Gene Ther 23(2):330–338

    Article  CAS  Google Scholar 

  • Serafini M, Manganini M, Borleri G, Bonamino M, Imberti L, Biondi A et al (2004) Characterization of CD20-transduced T lymphocytes as an alternative suicide gene therapy approach for the treatment of graft-versus-host disease. Hum Gene Ther 15(1):63–76

    Article  CAS  PubMed  Google Scholar 

  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  PubMed  Google Scholar 

  • Shen C-J, Yang Y-X, Han EQ, Cao N, Wang Y-F, Wang Y et al (2013) Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J Hematol Oncol 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G et al (2013) Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS ONE 8(5):e64138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Moyes JSE, Huls MH, Cooper LJN (2015) Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther 22(2):95–100

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Perazzelli J, Grupp SA, Barrett DM (2016) Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med 8(320):320ra3

    Article  PubMed  CAS  Google Scholar 

  • Skuljec J, Chmielewski M, Happle C, Habener A, Busse M, Abken H et al (2017) Chimeric antigen receptor-redirected regulatory T cells suppress experimental allergic airway inflammation, a model of asthma. Front Immunol 8:1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S et al (2017) Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting. Clin Cancer Res Off J Am Assoc Cancer Res 23(10):2478–2490

    Article  CAS  Google Scholar 

  • Song D-G, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119(3):696–706

    Article  CAS  PubMed  Google Scholar 

  • Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G et al (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5(12):1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Riddell SR (2015) Engineering CAR-T cells: design concepts. Trends Immunol 36(8):494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart-Jones G, Wadle A, Hombach A, Shenderov E, Held G, Fischer E et al (2009) Rational development of high-affinity T-cell receptor-like antibodies. Proc Natl Acad Sci U S A 106(14):5784–5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z et al (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123(10):4479–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamada K, Geng D, Sakoda Y, Bansal N, Srivastava R, Li Z et al (2012) Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin Cancer Res Off J Am Assoc Cancer Res 18(23):6436–6445

    Article  CAS  Google Scholar 

  • Tanoue K, Rosewell Shaw A, Watanabe N, Porter C, Rana B, Gottschalk S et al (2017) Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res 77(8):2040–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ et al (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5(12):1152–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N et al (2016) Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 6(6):664–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Textor A, Listopad JJ, Wührmann LL, Perez C, Kruschinski A, Chmielewski M et al (2014) Efficacy of CAR T-cell therapy in large tumors relies upon stromal targeting by IFNγ. Cancer Res 74(23):6796–6805

    Article  CAS  PubMed  Google Scholar 

  • Tey S-K, Dotti G, Rooney CM, Heslop HE, Brenner MK (2007) Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 13(8):913–924

    Article  CAS  Google Scholar 

  • Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ et al (2017) The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother CII

    Google Scholar 

  • Thomis DC, Marktel S, Bonini C, Traversari C, Gilman M, Bordignon C et al (2001) A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97(5):1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Torikai H, Reik A, Liu P-Q, Zhou Y, Zhang L, Maiti S et al (2012) A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119(24):5697–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP, Kelderman S et al (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 72(7):1844–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Waart AB, van de Weem NMP, Maas F, Kramer CSM, Kester MGD, Falkenburg JHF et al (2014) Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood 124(23):3490–3500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Windt GJW, Pearce EL (2012) Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 249(1):27–42

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC, Amiel E et al (2012) Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36(1):68–78

    Article  PubMed  CAS  Google Scholar 

  • Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C et al (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood 108(12):3890–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vera JF, Hoyos V, Savoldo B, Quintarelli C, Giordano Attianese GMP, Leen AM et al (2009) Genetic manipulation of tumor-specific cytotoxic T lymphocytes to restore responsiveness to IL-7. Mol Ther J Am Soc Gene Ther 17(5):880–888

    Article  CAS  Google Scholar 

  • Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol Off J Am Soc Clin Oncol 29(34):4548–4554

    Article  CAS  Google Scholar 

  • Wang X, Chang W-C, Wong CW, Colcher D, Sherman M, Ostberg JR et al (2011) A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118(5):1255–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Wang L-C, Tsai C-Y, Bhoj V, Gershenson Z, Moon E et al (2015a) Generation of potent T-cell immunotherapy for cancer using DAP12-based, multichain, chimeric immunoreceptors. Cancer Immunol Res 3(7):815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wong CW, Urak R, Mardiros A, Budde LE, Chang W-C et al (2015b) CMVpp65 vaccine enhances the antitumor efficacy of adoptively transferred CD19-redirected CMV-specific T cells. Clin Cancer Res Off J Am Assoc Cancer Res 21(13):2993–3002

    Article  CAS  Google Scholar 

  • Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR et al (2016) Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127(24):2980–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie S, van Schalkwyk MCI, Hobbs S, Davies DM, van der Stegen SJC, Pereira ACP et al (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Wofford JA, Wieman HL, Jacobs SR, Zhao Y, Rathmell JC (2008) IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111(4):2101–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-Y, Roybal KT, Puchner EM, Onuffer J, Lim WA (2015) Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science

    Google Scholar 

  • Xu A, Bhanumathy KK, Wu J, Ye Z, Freywald A, Leary SC et al (2016) IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell Biosci 6:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zah E, Lin M-Y, Silva-Benedict A, Jensen MC, Chen YY (2016) T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res 4(6):498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yu Z, Muranski P, Palmer DC, Restifo NP, Rosenberg SA et al (2013) Inhibition of TGF-β signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Ther 20(5):575–580

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Cao L, Xie J, Shi N, Zhang Z, Luo Z et al (2015) Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget 6(32):33961–33971

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P et al (2016) ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst 108(5)

    Google Scholar 

  • Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y et al (2017) Phase I escalating-dose trial of CAR-T therapy targeting CEA(+) metastatic colorectal cancers. Mol Ther J Am Soc Gene Ther

    Google Scholar 

  • Zhou X, Di Stasi A, Tey S-K, Krance RA, Martinez C, Leung KS et al (2014) Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood 123(25):3895–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratory was supported by grants from the Deutsche Forschungsgemeinschaft, Bonn; Deutsche Krebshilfe, Bonn; Bundesministerium für Bildung und Forschung, Berlin; Deutsche José Carreras-Leukämie Stiftung, München; Wilhelm Sander-Stiftung, München; Else Kröner-Fresenius Stiftung, Bad Homburg v.d.H.; the German-Israeli Foundation, Jerusalem; and the Fortune Program of the Medical Faculty of the University of Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinrich Abken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holzinger, A., Abken, H. (2020). Advances and Challenges of CAR T Cells in Clinical Trials. In: Theobald, M. (eds) Current Immunotherapeutic Strategies in Cancer. Recent Results in Cancer Research, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-030-23765-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23765-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23764-6

  • Online ISBN: 978-3-030-23765-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics