Skip to main content

Power Electronic Converters in AC Microgrid

  • Chapter
  • First Online:
Book cover Microgrid Architectures, Control and Protection Methods

Part of the book series: Power Systems ((POWSYS))

Abstract

As the major worldwide infrastructure distribution systems are in AC, the chapter intends to review the main power converter types for Energy Sources integration. The requirements imposed by the existing standards are envisaged. An effective solution for injection of electrical power from Renewable Energy Sources (DC and AC power sources) into the grid is presented. Additionally, the efficiency improvement by means of the modulation techniques is implemented and shown in this chapter. Due to the higher power energy in three-phase power systems (PSs), despite of the AC single-phase PSs, the large energy storage systems are not necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Azar, G. Bindewald, Ch. Clark, J. Davenport, J. Downes Angus, I. Gyuk, M. Johnson, S. Landsberg, K. Lynn, D. Meyer, W. Parks, R. Ram, Visioning the 21st Century Electricity Industry: Outcomes and Strategies for America (U.S. Department of Energy, Draft Vision of a Future Electric Grid, National Electricity Forum) (February 8–9, 2012)

    Google Scholar 

  2. Ch. Wang, Zh. Li, D.L.K. Murphy, Z. Li, A.V. Peterchev, S.M. Goetz, Photovoltaic multilevel inverter with distributed maximum power point tracking and dynamic circuit reconfiguration, in IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017—ECCE Asia), Kaohsiung, China Taiwan (June 2017)

    Google Scholar 

  3. https://www.iea.org/weo2017/. Accessed 2018

  4. B. Dudley, BP Energy Outlook 2030. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2011.pdf. Accessed 2018

  5. IEA, Grid Integration of Large-Capacity Renewable Energy Sources and Use of Large-Capacity. Electrical Energy Storage, White Paper (2012)

    Google Scholar 

  6. http://mpaenvironment.ei.columbia.edu. Accessed 2018

  7. G. Dehnavi, Coordinated Control of Power Electronic Converters in an Autonomous Microgrid. Doctoral dissertation, 2013, http://scholarcommons.sc.edu/etd/2175. Accessed 2018

  8. E. Cipriano Dos Santos, E.R. Cabral Da Silva, Advanced Power Electronics Converters PWM Converters Processing AC Voltages (Wiley, The Institute of Electrical and Electronics Engineers, 2015)

    Google Scholar 

  9. IEC, Grid integration of large-capacity renewable energy sources and use of large-capacity electrical energy storage. White paper (2012)

    Google Scholar 

  10. A. Keyhani, Design of Smart Power Grid Renewable Energy Systems (Wiley, Publication, 2011)

    Google Scholar 

  11. S. Pendharkar, GaN and SiC enable increased energy efficiency in power supplies. Texas Instrument (March 2018)

    Google Scholar 

  12. L.B.G. Campanhol, S.A. Oliveira da Silva, A. Albano Oliveira, V.D. Bacon, Power flow and stability analyses of a multifunctional distributed generation system integrating a photovoltaic system with unified power quality conditioner. IEEE Trans. Power Electron. 1–16 (2018)

    Google Scholar 

  13. T.D. Trung, Stability, voltage performance and power sharing issues of inverter-based microgrids via LMI optimization. M.Sc. Thesis (2018)

    Google Scholar 

  14. O.A. Ahmed, J.A.M. Bleijs, An overview of DC-DC converter topologies for fuel cell-ultracapacitor hybrid distribution system. Renew. Sustain. Energy Rev. (2015)

    Google Scholar 

  15. I. Batarseh, A. Harb, Power Electronics (Springer Nature, 2018)

    Google Scholar 

  16. S. Tahir, J. Wang, M.H. Baloch, Gh.S. Kaloi, Digital control techniques based on voltage source inverters in renewable energy applications: a review. Electronics, 7(18) (2018)

    Article  Google Scholar 

  17. R. Lizana, S. Rivera, Zh. Li, J. Luo, A.V. Peterchev, S. Goetz, Modular multilevel series/parallel converter with switched-inductor energy transfer between modules. IEEE Trans. Power Electron. (2018)

    Google Scholar 

  18. X. Yu, M.R. Starke, L.M. Tolbert, B. Ozpineci, Fuel cell power conditioning for electric power applications: a summary. IET Electr. Power Appl. 1(5), 643–656 (2007)

    Article  Google Scholar 

  19. M. Xu, L. Zhang, Y. Xing, L. Feng, A novel H6-type transformerless inverter for gridconnected photovoltaic application, in 7th IEEE Conference on Industrial Electronics and Applications (ICIEA) (2012)

    Google Scholar 

  20. H.G. Jeong, R.H. Seung, K.B. Lee, An improved maximum power point tracking method for wind power systems. Energies 5(5), 1339–1354 (2012)

    Article  Google Scholar 

  21. U. Supatti, Low cost z-source converter/inverter system for wind power generation. Ph.D. Thesis, Michigan State University (2011)

    Google Scholar 

  22. R. Palanisamy, K. Selvakumar, P. Kumar Sinha, D. Sen, A. Kumar, 3-Phase 3-Level transformerless neutral point clamped inverter for wind energy system. Int. J. Control Theor. Appl. 10(16) (2017)

    Google Scholar 

  23. Stadtwerke Karlsruhe GmbH, Karlsruhe, Germania; Solarpraxis AG, Berlin, Germany

    Google Scholar 

  24. X. Wang, J.M. Guerrero, F. Blaabjerg, Zh. Chen, A review of power electronics based microgrids. J. Power Electron. (2012)

    Google Scholar 

  25. R. Aparnathi, V.V. Dwivedi, Design and simulation low voltage single-phase transformerless photovoltaic inverter. TELKOMNIKA Indonesian J. Electr. Eng. 12(7), 5163–5173 (2014)

    Google Scholar 

  26. T. Orlowska Kowalska, F. Blaabjerg, J. Rodriguez, Advanced and Intelligent Control in Power Electronics and Drives (Springer, 2014), The H5 topology, patented by SMA manufacturing company on Sunny Boy converter, Assures up to 98% efficiency

    Google Scholar 

  27. K. Zeb, I. Khan, W. Uddin, M. Adil Khan, P. Sathishkumar, T.D. Curi Busarello, I. Ahmad, H.J. Kim, A review on recent advances and future trends of transformerless inverter structures for single-phase grid-connected photovoltaic systems. Energies (2018)

    Google Scholar 

  28. https://www1.eere.energy.gov/solar/pdfs/16_panhuber.pdf. Accessed 2018

  29. M. Gaiceanu, G. Fetecau, Grid connected wind turbine-fuel cell power system having power quality issues, EPQU’07 Barcelona (2007), pp. 7–13

    Google Scholar 

  30. S. Bolognani, M. Zigliotto, A space-vector approach to the analysis and design of three-phase current controllers. Conf. Rec ISIE 2002(2), 645–650 (2002)

    Google Scholar 

  31. A. von Juanne, B.B. Banerjee, Assessment of voltage unbalance. IEEE Trans. on Power Deliv. 16(4), 782–790 (2001)

    Article  Google Scholar 

  32. M.H.J. Bollen, Fast assessment methods for voltage sags in distribution systems. IEEE Trans. Ind. Appl. 32(6), 1414–1423 (Nov/Dec 1996)

    Article  Google Scholar 

  33. A. Tounsi, H. Abid, M. Kharrat, Kh. Elleuch, MPPT algorithm for wind energy conversion system based on PMSG, in 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2017

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI–UEFISCDI, project number PN-II-PT-PCCA-2011-3.2-1680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Gaiceanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaiceanu, M., Arama, I.N., Ghenea, I. (2020). Power Electronic Converters in AC Microgrid. In: Mahdavi Tabatabaei, N., Kabalci, E., Bizon, N. (eds) Microgrid Architectures, Control and Protection Methods. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-23723-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23723-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23722-6

  • Online ISBN: 978-3-030-23723-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics