Skip to main content

Subjecting Legacy Simulink Models to Timing Specifications

  • Conference paper
  • First Online:
Cyber Physical Systems. Model-Based Design (CyPhy 2018, WESE 2018)

Abstract

The interest in the logical execution time (LET) paradigm has recently experienced a boost, especially in the automotive industry. This is because it is considered a practical candidate for migrating concurrent legacy software from single- to multi-core platforms by introducing deterministic intra- and inter-core communication. In many cases, the implementation of these individual software components roots in MATLAB/Simulink, a modeling and simulation environment, where the controller functionality is described with a block-oriented formalism and simulated with synchronous reactive semantics. Considering LET already in the modeling and simulation phase instead of deferring this to the integration phase, as it is done now, is an important step towards the idea of models being the single source of truth and to estimate the effect of LET on end-to-end timing in cause-effect-chains at an early stage. This paper presents two approaches of simulating software components with LET semantics in Simulink. In contrast to previous work, which deals with clean slate top-down approaches, we focus on legacy software (in the form of Simulink models) that does not satisfy some of the initial assumptions of the LET programming model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AUTOSAR (2018). http://www.autosar.org

  2. Beckert, M., Möstl, M., Ernst, R.: Zero-time communication for automotive multi-core systems under SPP scheduling. In: Proceedings of Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, September 2016

    Google Scholar 

  3. Cremona, F., Morelli, M., Di Natale, M.: TRES: a modular representation of schedulers, tasks, and messages to control simulations in simulink. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC 2015. ACM, New York (2015)

    Google Scholar 

  4. Derler, P., Naderlinger, A., Pree, W., Resmerita, S., Templ, J.: Simulation of LET models in simulink and ptolemy. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008. LNCS, vol. 6028, pp. 83–92. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12566-9_5

    Chapter  Google Scholar 

  5. Di Natale, M., Guo, L., Zeng, H., Sangiovanni-Vincentelli, A.: Synthesis of multitask implementations of simulink models with minimum delays. IEEE Trans. Ind. Inform. 6(4), 637–651 (2010)

    Article  Google Scholar 

  6. Hennig, J., von Hasseln, H., Mohammad, H., Resmerita, S., Lukesch, S., Naderlinger, A.: Towards parallelizing legacy embedded control software using the LET programming paradigm. In: 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), WIP, Vienna, Austria, April 2016

    Google Scholar 

  7. Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: a time-triggered language for embedded programming. Proc. IEEE 91, 84–99 (2003)

    Article  Google Scholar 

  8. Henzinger, T., Kirsch, C., Sanvido, M.A.A., Pree, W.: From control models to real-time code using Giotto. IEEE Control Syst. Mag. 23(1), 50–64 (2003)

    Article  Google Scholar 

  9. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11813040_1

    Chapter  Google Scholar 

  10. Kloda, T., d’Ausbourg, B., Santinelli, L.: EDF schedulability analysis for an extended timing definition language. In: Proceedings of the 9th IEEE International Symposium on Industrial Embedded Systems, SIES 2014, Pisa, Italy, 18–20 June 2014, pp. 30–40 (2014)

    Google Scholar 

  11. Kluge, F., Schoeberl, M., Ungerer, T.: Support for the logical execution time model on a time-predictable multicore processor. SIGBED Rev. 13(4), 61–66 (2016)

    Article  Google Scholar 

  12. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical Systems Approach, 1 edn (2010)

    Google Scholar 

  13. Naderlinger, A.: Simulating execution time variations in MATLAB/Simulink. In: 2017 Winter Simulation Conference (WSC), pp. 1491–1502, December 2017

    Google Scholar 

  14. Naderlinger, A.: Simulating preemptive scheduling with timing-aware blocks in Simulink. In: Design, Automation and Test in Europe Conference and Exhibition, DATE 2017, Lausanne, Switzerland, 27–31 March 2017, pp. 758–763 (2017)

    Google Scholar 

  15. Naderlinger, A., Pree, W., Templ, J.: Visual modeling of real-time behavior. In: Proceedings of Symposium on Automotive/Avionics Systems Engineering (SAASE) (2009)

    Google Scholar 

  16. Naderlinger, A., Templ, J., Pree, W.: Simulating real-time software components based on logical execution time. In: SCSC 2009: Proceedings of the 2009 Summer Computer Simulation Conference (2009)

    Google Scholar 

  17. Pree, W., Templ, J., Hintenaus, P., Naderlinger, A., Pletzer, J.: TDL - steps beyond Giotto: a case for automated software construction. Int. J. Softw. Inf. 5(1–2), 335–354 (2011)

    Google Scholar 

  18. Resmerita, S., Naderlinger, A., Huber, M., Butts, K., Pree, W.: Applying real-time programming to legacy embedded control software. In: 2015 IEEE 18th International Symposium on Real-Time Distributed Computing, pp. 1–8, April 2015

    Google Scholar 

  19. Resmerita, S., Naderlinger, A., Lukesch, S.: Efficient realization of logical execution times in legacy embedded software. In: Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design, MEMOCODE 2017, Vienna, pp. 36–45 (2017)

    Google Scholar 

  20. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 12–27 (1988)

    Google Scholar 

  21. Stieglbauer, G.: Model-based development of embedded control software with TDL and Simulink. Ph.D. thesis, University of Salzburg (2007)

    Google Scholar 

  22. Templ, J.: Timing Definition Language (TDL) 1.5 specification. University of Salzburg, Technical report, July 2009. http://www.softwareresearch.net

  23. The MathWorks: Simulink Reference, R2018a (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Naderlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naderlinger, A. (2019). Subjecting Legacy Simulink Models to Timing Specifications. In: Chamberlain, R., Taha, W., Törngren, M. (eds) Cyber Physical Systems. Model-Based Design. CyPhy WESE 2018 2018. Lecture Notes in Computer Science(), vol 11615. Springer, Cham. https://doi.org/10.1007/978-3-030-23703-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23703-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23702-8

  • Online ISBN: 978-3-030-23703-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics