Skip to main content

A General Architecture of Oritatami Systems for Simulating Arbitrary Finite Automata

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11601))

Included in the following conference series:

Abstract

In this paper, we propose an architecture of oritatami systems with which one can simulate an arbitrary nondeterministic finite automaton (NFA) in a unified manner. The oritatami system is known to be Turing-universal but the simulation available so far requires 542 bead types and \(O(t^4 \log ^2 t)\) steps in order to simulate t steps of a Turing machine. The architecture we propose employs only 329 bead types and requires just \(O(t |Q|^4 |\varSigma |^2)\) steps to simulate an NFA with a state set Q working on a word of length t over an alphabet \(\varSigma \).

This work is supported primarily by JSPS-NRF Bilateral Program No. YB29004 to Han and Seki, the Basic Science Research Program (NRF-2018R1D1A1A09084107) to Han, JSPS KAKENHI Grant-in-Aids for Young Scientists (A) No. 16H05854 and for Challenging Research (Exploratory) No. 18K19779 to Seki, and JST Program to Disseminate Tenure Tracking System, MEXT, Japan No. 6F36 to Seki.

Kim is also supported by NIH R01GM109459, NSF’s CCF01526485, DMS-1800443, the Southeast Center for Mathematics and Biology, and the NSF-Simons Research Center for Mathematics of Complex Biological Systems (DMS-1764406, 594594).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A periodic transcript is likely to be able to be transcribed from a circular DNA [3].

References

  1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Demaine, E.D., et al.: Know when to fold ’Em: self-assembly of shapes by folding in Oritatami. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 19–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1_2

    Chapter  Google Scholar 

  3. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA Origami structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_1

    Chapter  Google Scholar 

  4. Geary, C.W., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold greedily during transcription. In: MFCS 2016. LIPIcs, vol. 58, pp. 43:1–43:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  5. Geary, C.W., Meunier, P., Schabanel, N., Seki, S.: Proving the Turing universality of Oritatami co-transcriptional folding. In: Hsu, W., Lee, D., Liao, C. (eds.) ISAAC 2018. LIPIcs, vol. 123, pp. 23:1–23:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.23

  6. Geary, C.W., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804 (2014). https://doi.org/10.1126/science.1253920

    Article  Google Scholar 

  7. Han, Y.-S., Kim, H.: Construction of geometric structure by Oritatami system. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 173–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1_11

    Chapter  Google Scholar 

  8. Han, Y., Kim, H., Masuda, Y., Seki, S.: A general architecture of Oritatami systems for simulating arbitrary finite automata (2019). http://arxiv.org/abs/1904.10174

  9. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94812-6_22

    Chapter  MATH  Google Scholar 

  10. Watters, K., Strobel, E.J., Yu, A.M., Lis, J.T., Lucks, J.B.: Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23(12), 1124–1133 (2016). https://doi.org/10.1038/nsmb.3316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinnosuke Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, YS., Kim, H., Masuda, Y., Seki, S. (2019). A General Architecture of Oritatami Systems for Simulating Arbitrary Finite Automata. In: Hospodár, M., Jirásková, G. (eds) Implementation and Application of Automata. CIAA 2019. Lecture Notes in Computer Science(), vol 11601. Springer, Cham. https://doi.org/10.1007/978-3-030-23679-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23679-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23678-6

  • Online ISBN: 978-3-030-23679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics