Skip to main content

The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1200))

Abstract

The teleost fishes are the largest and most diverse vertebrate group, accounting for nearly half of all known vertebrate species. Teleost fish exhibit greater species diversity than any other group of vertebrates and this is reflected in the unique variety of different reproductive strategies displayed by fish. Fish have always been an important resource for humans worldwide, especially as food. While wild capture fisheries have historically been the main source of fish, the farming of fish (aquaculture) is increasingly becoming the more dominant source of food fish, and is predicted to account for 60% of total global fish production by 2030.

Fishes are increasingly threatened by a wide range of anthropogenic impacts, including loss of habitat, pollution, invasive species and over-exploitation. In addition, climate change, especially the consequences of global warming, can impact fish at all levels of biological organization from the individual to the population level, influencing both physiological and ecological processes in a variety of direct and indirect ways. As such, there is an urgent need to protect and conserve the huge genetic diversity offered by this diverse vertebrate group, not just as a source of genes for contemporary breeding and for protection against the consequences of climate change and disease, but also as part of our national heritage. While the cryopreservation of reproductive cells is a means of achieving these objectives, currently only fish sperm can be successfully frozen. Due to their large size, large yolk compartment, low membrane permeability and high chilling sensitivity, successful and reproducible protocols for the cryopreservation of fish oocytes and embryos still remains elusive. However, significant advances have been made in the cryopreservation of primordial germ cells as an alternative means of conserving both paternal and maternal genomes. Although more research needs to be carried out on how these cells can be optimally applied to emerging reproductive technologies, including transplantation techniques and surrogate broodstock technologies, the successful cryopreservation of fish germ cells, and the establishment of genetic resource banks, offers the possibility of both conserving and restoring threatened species. Further, current and future conservation efforts need to consider the impact of climate change in both in situ conservation and reintroduction efforts.

In conclusion, it is anticipated that the successful cryopreservation of fish germplasm will result in a range of economic, ecological and societal benefits. In partnership with emerging assisted reproductive technologies, the successful cryopreservation of fish germplasm will lead to more efficient reproduction in aquaculture, assist selective breeding programmes, and be of crucial importance to future species conservation actions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerni P. Risk, regulation and innovation: the case of aquaculture and transgenic fish. Aquat Sci. 2004;66:327–41.

    Article  Google Scholar 

  • Aksnes A, Gjerde B, Roald SO. Biological, chemical and organoleptic changes during maturation of farmed Atlantic salmon, Salmo salar. Aquaculture. 1986;53:7–20.

    Article  Google Scholar 

  • Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014;81:5–17.

    Article  PubMed  Google Scholar 

  • Asturiano JF, Cabrita E, Horvath A. Progress, challenges and perspectives on fish gamete cryopreservation: a mini review. Gen Comp Endocrinol. 2017;245:69–76.

    Article  CAS  PubMed  Google Scholar 

  • Baloch AR, Franěk R, Saito T, Pšenička M. Dead-end (dnd) protein in fish—a review. Fish Physiol Biochem. 2019; https://doi.org/10.1007/s10695-018-0606-x.

  • Barbaro A, Francescon A, Bozzato G, Merlin A, Belvedere P, Colombo L. Induction of spawning in gilthead seabream, Sparus aurata L., by long-acting GnRH agonist and its effect on egg quality and daily timing of spawning. Aquaculture. 1997;154:349–59.

    Article  CAS  Google Scholar 

  • Beardmore JA, Porter JS. Genetically modified organisms and aquaculture. Fisheries circular no. 989. Rome: FAO; 2003.

    Google Scholar 

  • Beardmore JA, Mair GC, Lewis RI. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture. 2001;197(1/4):283–301.

    Article  Google Scholar 

  • Beirão J, Soares F, Herráez MP, Dinis MT, Cabrita E. Changes in Solea senegalensis sperm quality throughout the year. Anim Reprod Sci. 2011;126:122–9.

    Article  PubMed  Google Scholar 

  • Benfey TJ. Effectiveness of triploidy as a management tool for reproductive containment of farmed fish: Atlantic salmon (Salmo salar) as a case study. Rev Aquac. 2019;8:264–82.

    Article  Google Scholar 

  • Bonnet E, Montfort J, Esqurre J, Hugot K, Fostier A, Bobe J. Effect of photoperiod manipulation on rainbow trout (Oncorhynchus mykiss) egg quality: a genomic study. Aquaculture. 2007;268:13–22.

    Article  Google Scholar 

  • Boryshpolets S, Kowalski RK, Dietrich GJ, Dzyuba B, Ciereszko A. Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology. 2013;80:758–65.

    Article  CAS  PubMed  Google Scholar 

  • Brander KM. Global fish production and climate change. PNAS. 2007;104:19709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359.

    Article  PubMed  CAS  Google Scholar 

  • Bromage N, Porter M, Randall C. The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin. Aquaculture. 2001;197:63–98.

    Article  CAS  Google Scholar 

  • Cabrita E, Martínez-Páramo S, Gavaia PJ, Riesco MF, Valcarce DG, Sarasquete C, Herráez MP, Robles V. Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture. 2014;432:389–401.

    Article  CAS  Google Scholar 

  • Carrillo M, Bromage NR, Zanuy S, Serrano R. The effect of modifications in photoperiod on spawning time, ovarian development and egg quality in the sea bass (Dicentrarchus labrax L.). Aquaculture. 1989;81:351–65.

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR. Mammal population losses and the extinction crisis. Science. 2002;296(5569):904–7.

    Article  CAS  PubMed  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS. 2017;114:E6089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Tian YS. Cryopreservation of flounder (Paralichthys olivaceus) embryos by vitrification. Theriogenology. 2005;63:1207–19.

    Article  CAS  PubMed  Google Scholar 

  • Chenais N, Depince A, Le Bail PY, Labbe C. Fin cell cryopreservation and fish reconstruction by nuclear transfer stand as promising technologies for the preservation of finfish genetic resources. Aquac Int. 2014;22:63–76.

    Article  Google Scholar 

  • Cinalli RM, Rangan P, Lehmann R. Germ cells are forever. Cell. 2008;132:559–62.

    Article  CAS  PubMed  Google Scholar 

  • Clausen R, York R. Global biodiversity decline of marine and freshwater fish: a cross-national analysis of economic, demographic and ecological influences. Soc Sci Res. 2008;37:1310–20.

    Article  Google Scholar 

  • Copeland DL, Duff RJ, Liu Q, Prokop J, Londraville RL. Leptin in teleost fishes: an argument for comparative study. Front Physiol. 2011;2:26. https://doi.org/10.3389/fphys.2011.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuevas-Uribe R, Yang H, Daly J, Savage MG, Walter RB, Tiersch TR. Production of F1 offspring with vitrified sperm from a live-bearing fish, the green swordtail Xiphophorus hellerii. Zebrafish. 2011;8:167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas-Uribe R, Chesney EJ, Daly J, Tiersch TR. Vitrification of sperm from marine fish: effect on motility and membrane integrity. Aquacult Res. 2015;46:1770–84.

    Article  CAS  Google Scholar 

  • Cuevas-Uribe R, Hu E, Daniels H, Gill AO, Tiersch TR. Vitrification as an alternative approach for sperm cryopreservation in marine fishes. N Am J Aquac. 2017;79:187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Carvalho AFS, Ramos SE, de Carvalho TSG, de Souza YCP, Zangeronimo MG, Pereira LJ, Murgas LDS. Efficacy of fish embryo vitrification protocols in terms of embryo morphology—a systematic review. CryoLetters. 2014;35:361–70.

    Google Scholar 

  • de Siqueira-Silva DH, Saito T, Dos Santos-Silva AP, da Silva Costa R, Psenicka M, Yasui GS. Biotechnology applied to fish reproduction: tools for conservation. Fish Physiol Biochem. 2018;44:1469–85.

    Article  PubMed  CAS  Google Scholar 

  • Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364.

    Article  CAS  Google Scholar 

  • Devlin RH, Yesaki TY, Biagi CA, Donaldson EM, Swanson P, Chan W-K. Extraordinary salmon growth. Nature. 1994;371:209–10.

    Article  Google Scholar 

  • Devlin RH, Yesaki TY, Donaldson EM, Du SJ, Hew CL. Production of germline transgenic Pacific salmonids with dramatically increased growth performance. Can J Fish Aquat Sci. 1995;52:1376–84.

    Article  Google Scholar 

  • Devlin RH, Biagi CA, Yesaki TY, Smailus DE, Byatt JC. Growth of domesticated transgenic fish—a growth-hormone transgene boosts the size of wild but not domesticated trout. Nature. 2001;409:781–2.

    Article  CAS  PubMed  Google Scholar 

  • Dias MS, Tedesco PA, Hugueny B, Jézéquel C, Beauchard O, Brosse S, Oberdorff T. Anthropogenic stressors and riverine fish extinctions. Ecol Indic. 2017;79:37–46.

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008;321:926–9.

    Article  CAS  PubMed  Google Scholar 

  • Dunham RA, Chitmanat C, Nichols A, Argue B, Powers DA, Chen TT. Predator avoidance of transgenic channel catfish containing salmonid growth hormone genes. Marine Biotechnol. 1999;1:545–51.

    Article  CAS  Google Scholar 

  • Eliasen EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SC, Farrell AP. Differences in thermal tolerance among sockeye salmon populations. Science. 2011;332:109–12.

    Article  CAS  Google Scholar 

  • FAO. The state of world fisheries and aquaculture. Rome: FAO; 2018.

    Google Scholar 

  • Farrell AP, Hinch SG, Cooke SJ, Patterson DA, Crossin GT, Lapointe M, Mathes MT. Pacific salmon in hot water: applying aerobic scope models and biotelemetry to predict the success of spawning migration. Physiol Biochem Zool. 2008;81:697–708.

    Article  CAS  PubMed  Google Scholar 

  • Felip A, Zanuy S, Carrillo M, Martinez G, Ramos J, Piferrer F. Optimal conditions for the induction of triploidy in the sea bass (Dicentrarchus labrax L.). Aquaculture. 1997;152:287–98.

    Article  Google Scholar 

  • Felip A, Zanuy S, Muriach B, Cerdá-Reverter JM, Carrillo M. Reduction of sexual maturation in male Dicentrarchus labrax by continuous light both before and during gametogenesis. Aquaculture. 2008;275(1–4):347–55.

    Article  Google Scholar 

  • Figueroa E, Merno O, Risopatron J, Isachenko V, Sánchez R, Effer B, Isachenko E, Farias JG, Val debenito I. Effect of seminal plasma on Atlantic salmon (Salmo salar) sperm vitrification. Theriogenology. 2015;83:238–45.

    Article  CAS  PubMed  Google Scholar 

  • Figueroa E, Risopatron J, Sanchez R, Isachenko E, Merino O, Isachenko V, Valdebenito I. Spermatozoa vitrification of sex-reversed rainbow trout (Oncorhynchus mykiss): effect of seminal plasma on physiological parameters. Aquaculture. 2013;372–375:119–26.

    Article  Google Scholar 

  • Fjelldal PG, Hansen T. Vertebral deformities in triploid Atlantic salmon (Salmo salar L.) underyearling smolts. Aquaculture. 2010;309:131–6.

    Article  Google Scholar 

  • Fjelldal PG, Hansen T, Lock E-J, Wargelius A, Fraser TWK, Sambraus F, El-Mowafi A, Albrektsen S, Waagbø R, Ørnsrud R. Increased dietary phosphorous prevents vertebral deformities in triploid Atlantic salmon (Salmo salar L.). Aquacult Nutr. 2016;22:72–90.

    Article  CAS  Google Scholar 

  • Fleming IA, Huntingford F. Reproductive behaviour. In: Huntingford F, Jobling M, Kadri S, editors. Aquaculture and behaviour. Oxford: Blackwell; 2012. p. 286–321.

    Chapter  Google Scholar 

  • Fornies MA, Mananos E, Carrillo M, Rocha A, Laureau S, et al. Spawning induction of individual European sea bass females (Dicentrarchus labrax) using different GnRHa-delivery systems. Aquaculture. 2001;202:221–34.

    Article  CAS  Google Scholar 

  • Francescon A, Barbaro A, Bertotto D, Libertini A, Cepollaro F, Richard J, Belvedere P, Colombo L. Assessment of homozygosity and fertility in meiotic gynogens of the European sea bass (Dicentrarchus labrax L.). Aquaculture. 2004;243:93–102.

    Article  Google Scholar 

  • Fraser DJ, Minto C, Calvert AM, Eddington JD, Hutchings JA. Potential for domesticated-wild interbreeding to induce maladaptive phenology across multiple populations of wild Atlantic salmon (Salmo salar). Can J Fish Aquat Sci. 2010;67:1768–75.

    Article  Google Scholar 

  • Fraser T, Fjelldal PG, Hansen T, Mayer I. Welfare considerations of triploid fish. Rev Fish Sci. 2012;20:192–211.

    Article  Google Scholar 

  • Fraser TWK, Skjæraasen JE, Mayer I, Sambraus F, Hansen T, Fjelldal PG. The effect of triploidy on the culture performance, deformity prevalence, and heart morphology in Atlantic salmon. Aquaculture. 2013;416–417:255–64.

    Article  Google Scholar 

  • Fraser TWK, Hansen T, Mayer I, Skjæraasen JE, Glover KA, Sambraus F, Fjelldal PG. The effect of triploidy on vaccine side-effects in Atlantic salmon. Aquaculture. 2014;433:481–90.

    Article  Google Scholar 

  • Friedland KD, Reddin DG, McMenemy JR, Drinkwater KF. Multidecadal trends in North American Atlantic salmon (Salmo salar) stocks and climate trends relevant to juvenile survival. Can J Fish Aquat Sci. 2003;60:563–83.

    Article  Google Scholar 

  • Godinho HP, Viveiros ATM. Current status of sperm cryopreservation of Brazilian characiform fishes. In: Tiersch TR, Green CC, editors. Cryopreservation in aquatic species. 2nd ed. Baton Rouge: World Aquaculture Society; 2011. p. 875–84.

    Google Scholar 

  • Godoy LC, Streit DP Jr, Zampolla T, Bos-Mikich A, Zhang T. A study on the vitrification of stage III zebrafish (Danio rerio) ovarian follicles. Cryobiology. 2013;67:347–54.

    Article  CAS  PubMed  Google Scholar 

  • Gomelsky B. Chromosome set manipulation and sex control in common carp: a review. Aquat Living Resour. 2003;16:408–15.

    Article  Google Scholar 

  • Graham CT, Harrod C. Implications of climate change for the fishes of the British Isles. J Fish Biol. 2009;74:1143–205.

    Article  CAS  PubMed  Google Scholar 

  • Graves-Herring JE, Wildt DE, Comizzoli P. Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature. Biol Reprod. 2013;88:1–7.

    Article  Google Scholar 

  • Guan G, Rawson DM, Zhang T. Cryopreservation of zebrafish (Danio rerio) oocytes by vitrification. Cryo Letters. 2010;31:230–8.

    CAS  PubMed  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest R. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci. 2007;6:267–85.

    Article  PubMed  Google Scholar 

  • Hagedorn M, Hsu E, Kleinhans FW, Wildt DE. New approaches for studying the permeability of fish embryos: toward successful cryopreservation. Cryobiology. 1997a;34:335–47.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Kleinhans FW, Freitas R, Liu J, Hsu EW, Wildt DE, Rall WF. Water distribution and permeability of zebrafish embryos, Brachydanio rerio. J Exp Zool. 1997b;278:356–71.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Kleinhans FW, Wildt DE, Rall WF. Chill sensitivity and cryoprotectant permeability of dechlorinated zebrafish embryos, Brachydanio rerio. Cryobiology. 1997c;34:251–63.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Lance SL, Fonseca DM, Kleinhans FW, Artimov D, Fleischer R, Hoque AT, Hamilton MB, Pukazhenthi BS. Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation. Biol Reprod. 2002;67:961–6.

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Varga Z, Walter RB, Tiersch TR. Workshop report: cryopreservation of aquatic biomedical models. Cryobiology. 2019;86:120–9.

    Article  PubMed  Google Scholar 

  • Hallerman EM, McLean E, Fleming IA. Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: a review identifying research needs. Appl Anim Behav Sci. 2007;104:265–94.

    Article  Google Scholar 

  • Hiddink JG, Hofstede RT. Climate induced increases in species richness of marine species. Glob Chang Biol. 2008;14:453–60.

    Article  Google Scholar 

  • Hinits Y, Moav B. Growth performance studies in transgenic Cyprinus carpio. Aquaculture. 1999;173:285–96.

    Article  Google Scholar 

  • Ho RK, Kimmel CB. Commitment of cell fate in the early zebrafish embryo. Science. 1993;261:109–11.

    Article  CAS  PubMed  Google Scholar 

  • Holt WV. Who needs cytoplasm? Genomic preservation for the 21st century. Biol Reprod. 2013;88:1–2.

    Article  Google Scholar 

  • Holt WV, Pickard AR. Role of reproductive technologies and genetic resource banks in animal conservation. Rev Reprod. 1999;4:143–50.

    Article  CAS  PubMed  Google Scholar 

  • Isayeva A, Zhang T, Rawson DM. Studies on chilling sensitivity of zebrafish (Danio rerio) oocytes. Cryobiology. 2004;49:114–22.

    Article  PubMed  Google Scholar 

  • Iversen M, Myhr AI, Wargelius A. Approaches for delaying sexual maturation in salmon and their possible ecological and ethical implications. J Appl Aquac. 2016;28:330–69.

    Article  Google Scholar 

  • Izquierdo MS, Fernandez-Palacios H, Tacon A. Effect of brood stock nutrition on reproductive performance of fish. Aquaculture. 2001;197:25–42.

    Article  Google Scholar 

  • Janik M, Kleinhans FW, Hagedorn M. Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology. 2000;41:25–34.

    Article  CAS  PubMed  Google Scholar 

  • Jiahuan R, Wenhao S, Xiaofan G, Wei S, Shanjie Z, Maolong H, Haifeng W, Guangxu L. Ocean acidification impairs foraging behavior by interfering with olfactory neural signal transduction in black sea bream, Acanthopagrus schlegelii. Front Physiol. 2018;9:1592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonsson B, Jonsson N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J Fish Biol. 2009;75:2381–447.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Diserud OH, Fiske P, Hindar K. Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES J Mar Sci. 2016;73:2488–98.

    Article  Google Scholar 

  • Kasa E, Bernath G, Kollar T, Zarski D, Lujic J, Marinovic Z, Bokor Z, Hegyi A, Urbanyi B, Vilchez MC, Morini M, Penaranda S, Perez L, Asturiano JF, Horvath A. Development of sperm vitrification protocols for freshwater fish (Eurasian perch, Perca fluviatilis) and marine fish (European eel, Anguilla anguilla). Gen Comp Endocrinol. 2017;245:102–7.

    Article  CAS  PubMed  Google Scholar 

  • Khosla K, Wang Y, Hagedorm M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ASC Nano. 2017;11:7869–78.

    Article  CAS  Google Scholar 

  • Kobayashi T, Takeuchi Y, Takeuchi T, et al. Generation of viable fish from cryopreserved primordial germ cells. Mol Reprod Dev. 2007;74:207–13.

    Article  CAS  PubMed  Google Scholar 

  • Kopeika E, Kopeika J, Zhang T. Cryopreservation of fish sperm. Methods Mol Biol. 2007;368:203–17.

    Article  CAS  PubMed  Google Scholar 

  • Kusuda S, Teranishi T, Koide N, Nagai T, Arai K, Yamaha E. Pluripotency of cryopreserved blastomeres of the goldfish. J Exp Zool. 2004;301A:131–8.

    Article  Google Scholar 

  • Kutluyer F, Kayim M, Öğretmen F, Büyükleblebici S, Tuncer PB. Cryopreservation of rainbow trout Oncorhynchus mykiss spermatozoa: effects of extender supplemented with different antioxidants on sperm motility, velocity and fertility. Cryobiology. 2014;69:462–6.

    Article  CAS  PubMed  Google Scholar 

  • Labbé C, Robles V, Herraez MP. Epigenetics in fish gametes and early embryo. Aquaculture. 2017;472:93–106.

    Article  CAS  Google Scholar 

  • Lacerda SMSN, Batlouni SR, Silva SBG, et al. Germ cells transplantation in fish: the Nile-tilapia model. Anim Reprod. 2006;3:146–59.

    Google Scholar 

  • Lacerda SMSN, Batlouni SR, Costa GMJ, et al. A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS One. 2010;5:e10740.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacerda SMSN, Costa GMJ, Campos-Junior PHA, Segatelli TM, Yazawa R, Takeuchi Y, Morita T, Yoshizaki G, Franca LR. Germ cell transplantation as a potential biotechnological approach to fish reproduction. Fish Physiol Biochem. 2013;39:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Lahnsteiner F, Mansour N, Kunz FA. The effect of antioxidants on the quality of cryopreserved semen in two salmonid fish, the brook trout (Salvelinus fontinalis) and the rainbow trout (Oncorhynchus mykiss). Theriogenology. 2011;76:882–90.

    Article  CAS  PubMed  Google Scholar 

  • Le Bail PY, Depince A, Chenais N, Mahe S, Maisse G, Labbe C. Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC Dev Biol. 2010;10:64. https://doi.org/10.1186/1471-213X-10-64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq E, Taylor JF, Sprague M, Migaud H. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult Eng. 2011;44:35–47.

    Article  Google Scholar 

  • Lee S, Iwasaki Y, Shikina S, Yoshizaki G. Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci U S A. 2013;110:1640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Katayama N, Yoshizaki G. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem Biophys Res Commun. 2016;478:1478–83.

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Long W, Chen J, Hopkins N. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc Natl Acad Sci U S A. 1992;89:4519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln RF, Scott AP. Production of all-female triploid rainbow trout. Aquaculture. 1983;30:375–80.

    Article  Google Scholar 

  • Linhartova Z, Saito T, Kaspar V, Rodina M, Praskova E, Hagihara S, Psenicka M. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology. 2015;84:1246–55.

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Zhang T, Rawson DM. Effect of cooling rate and partial removal of yolk on the chilling injury in zebrafish (Danio rerio) embryos. Theriogenology. 2001;55:1719–31.

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Qin QB, Xiao J, Lu W, Shen J, Li W, et al. The formation of the polyploid hybrids from different subfamily fish crossing and its evolutionary significance. Genetics. 2007;176:1023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Song Y, Cheng KM, Silversides FG. Production of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Corurnix japonica). Biol Reprod. 2010;83:15–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang X, Wang W, Zhang X, Xu S, Ma D, Zhizhong X, Xiao Y. Effect of the addition of six antioxidants on sperm motility, membrane integrity and mitochondrial function in red seabream (Pagrus major) sperm cryopreservation. Fish Physiol Biochem. 2015;41:413–22.

    Article  CAS  PubMed  Google Scholar 

  • Lubzens E, Pekarsky I, Blais I, Cionna C, Carnevali O. Cryopreservation of oocytes from a marine fish: achievements and obstacles. Cryobiology. 2005;51:385.

    Google Scholar 

  • Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Kása E, Urbányi B, Horváth A. First successful vitrification of salmonid ovarian tissue. Cryobiology. 2017;76:154–7.

    Article  PubMed  CAS  Google Scholar 

  • Luo DJ, Hu W, Chen SP, Zhu ZY. Critical developmental stages for the efficiency of somatic cell nuclear transfer in zebrafish. Int J Biol Sci. 2011;7:476–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maclean N, Laight RJ. Transgenic fish: an evaluation of benefits and risks. Fish Fish. 2000;1:146–72.

    Article  Google Scholar 

  • Magnotti C, Cerqueira V, Lee-Estevez M, Farias JG, Valdebenito I, Figueroa E. Cryopreservation and vitrification of fish semen: a review with special emphasis on marine species. Rev Aquac. 2018;10:15–25.

    Article  Google Scholar 

  • Majhi SK, Hattori RS, Yokota M, et al. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines. PLoS One. 2009;4:e6132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marques LS, Bos-Mikich A, Godoy LC, Silva LA, Maschio D, Zhang T, Streit DP Jr. Viability of zebrafish (Danio rerio) ovarian follicles after vitrification in a metal container. Cryobiology. 2015;71:367–73.

    Article  CAS  PubMed  Google Scholar 

  • Martínez R, Juncal J, Zaldívar C, Arenal A, Guillén I, Morera V, et al. Growth efficiency in transgenic tilapia (Oreochromis sp.) carrying a single copy of an homologous cDNA growth hormone. Biochem Biophys Res Commun. 2000;267:466–72.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Páramo S, Barbosa V, Pérez-Cerezales S, Robles V, Herráez MP. Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos. Cryobiology. 2009;58:128–33.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Páramo S, Horvath A, Labbe C, et al. Cryobanking of aquatic species. Aquaculture. 2017;472:156–77.

    Article  PubMed  Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A, Hynes R, Maoiléidigh NÓ, Rogan G, Taggart J, et al. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interaction with escaped farm salmon. Proc R Soc Lond B. 2003;270:2443–520.

    Article  Google Scholar 

  • Moon SH, Lim HK, Kwon JY, Lee JK, Chang YJ. Increased plasma 17-hydroxyprogesterone and milt production in response to gonadotropin-releasing hormone agonist in captive male starry flounder, Platichthys stellatus. Aquaculture. 2003;218:703–16.

    Article  CAS  Google Scholar 

  • Muir WM, Howard D. Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Res. 2002;11:101–14.

    Article  CAS  PubMed  Google Scholar 

  • Mylonas CC, Zohar Y. Use of GnRHa-delivery systems for the control of reproduction in fish. Rev Fish Biol Fish. 2001;10:463–91.

    Article  Google Scholar 

  • Mylonas CC, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol. 2010;165:516–34.

    Article  CAS  PubMed  Google Scholar 

  • Mylonas CC, Duncan NJ, Asturiano JF. Hormonal manipulations for the enhancement of sperm production in cultured fish and evaluation of sperm quality. Aquaculture. 2017;472:21–44.

    Article  CAS  Google Scholar 

  • Nagasawa K, Ishida M, Octavera A, Kusano K, Kezuka F, Kitano T, Yoshiura Y, Yoshizaki G. Novel method for mass producing genetically sterile fish from surrogate broodstock via spermatogonial transplantation. Biol Reprod. 2018;100:535–46.

    Article  Google Scholar 

  • Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka M. Identification of germline stem cells in the ovary of the teleost medaka. Science. 2010;328:1561–3.

    Article  CAS  PubMed  Google Scholar 

  • Nam YK, Kim DS. Ploidy status of progeny from the crosses between tetraploid males and diploid females in mud loach (Misgurnus mizolepis). Aquaculture. 2004;236:575–82.

    Article  CAS  Google Scholar 

  • Nynca J, Arnold G, Frölich J, Ciereszko A. Cryopreservation-induced alterations in protein composition of rainbow trout semen. Proteomics. 2015;15:2643–54.

    Article  CAS  PubMed  Google Scholar 

  • Okutsu T, Suzuki K, Takeuchi Y. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci U S A. 2006;103:2725–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okutsu T, Shikina S, Kanno M, et al. Production of trout offspring from triploid salmon parents. Science. 2007;317:1517.

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst NW, Munday PL. Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res. 2011;62:1015–26.

    Article  CAS  Google Scholar 

  • Penney W, Lush PL, Wade AJ, Brown JA, Burton MPM. Effect of Photoperiod manipulation on broodstock spawning, fertilization success, and egg developmental abnormalities in Atlantic cod, Gadus morhua. J World Aquacult Soc. 2006;37:273–81.

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD. Climate change and distribution shifts in marine fishes. Science. 2005;308:1912–4.

    Article  CAS  PubMed  Google Scholar 

  • Piferrer F. Endocrine sex control strategies for the feminization of teleost fish. In: Lee C-S, Donaldson EM, editors. Reproductive biotechnology in finfish aquaculture. New York: Elsevier; 2001. p. 229–81.

    Chapter  Google Scholar 

  • Piferrer F, Beaumont A, Falguiere JC, Flajshans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. 2009;293:125–56.

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344 https://doi.org/10.1126/science.1246752.

    Article  CAS  PubMed  Google Scholar 

  • Plachinta M, Zhang T, Rawson DM. Preliminary studies on cryopreservation of zebrafish (Danio rerio) vitellogenic oocytes using controlled slow cooling. Cryobiology. 2004;49:347.

    Google Scholar 

  • Poleo GA, Godke RR, Tiersch TR. Intracytoplasmic sperm injection using cryopreserved, fixed, and freeze-dried sperm in eggs of Nile tilapia. Marine Biotechnol. 2005;7:104–11.

    Article  CAS  Google Scholar 

  • Pörtner O, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 2007;315:95–7.

    Article  CAS  PubMed  Google Scholar 

  • Pörtner O, Peck MA. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol. 2010;77:1745–79.

    Article  PubMed  Google Scholar 

  • Pšenička M, Saito T, Linhartová Z, Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology. 2015;83:1085–92.

    Article  PubMed  Google Scholar 

  • Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72:119–22.

    Article  PubMed  CAS  Google Scholar 

  • Rahman SM, Strüssmann CA, Suzuki T, Watanabe M. Electroporation enhances permeation of cryoprotectant (dimethyl sulfoxide) into Japanese whiting (Sillago japonica) embryos. Theriogenology. 2013;79:853–8.

    Article  CAS  PubMed  Google Scholar 

  • Rahman SM, Strüssmann CA, Suzuki T, Majhi SK, Hattori RS, Alam MA. Effects of ultrasound on permeation of cryoprotectants into Japanese whiting Sillago japonica embryos. Cryobiology. 2017;77:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen RS, Morrissey MT. Biotechnology in aquaculture: transgenics and polyploidy. Compr Rev Food Sci Food Saf. 2007;6:2–16.

    Article  CAS  Google Scholar 

  • Rawson DM, Reid GM, Lloyd RE. Conservation rationale, research applications and techniques in the cryopreservation of lower vertebrate biodiversity from marine and freshwater environments. Int Zoo Yearb. 2011;45:108–23.

    Article  Google Scholar 

  • Reed TE, Prodöhl P, Hynes R, Cross T, Ferguson A, McGinnity P. Quantifying heritable variation in fitness-related traits of wild, farmed and hybrid Atlantic salmon families in a wild river environment. Heredity. 2015;115:173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds JD, Webb TJ, Hawkins LA. Life history and ecological correlates of extinction risk in European freshwater fishes. Can J Fish Aquat Sci. 2005;62:854–62.

    Article  Google Scholar 

  • Riesco MF, Robles V. Cryopreservation causes genetic and epigenetic changes in zebrafish genital ridges. PLoS One. 2013;8(6):e67614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK. Resolving the effect of climate change on fish populations. ICES J Mar Sci. 2009;66:1570–83.

    Article  Google Scholar 

  • Robles V, Cabrita E, Fletcher GL, Shears MA, King MJ, Herráez MP. Vitrification assays with embryos from a cold tolerant sub-Arctic fish species. Theriogenology. 2005;64:1633–46.

    Article  CAS  PubMed  Google Scholar 

  • Robles V, Cabrita E, Acker JP, Herráez P. Embryo cryopreservation: what we know until now. In: Cabrite E, Robles V, Herráez P, editors. Methods in reproductive aquaculture: marine and freshwater species. Boca Raton: CRC Press; 2009. p. 265–94.

    Google Scholar 

  • Robles V, Riesco MF, Psenicka M, Saito T, Valcarce DG, Cabrita E, Herraez P. Biology of teleost primordial germ cells (PGCs) and spermatogonia: biotechnological applications. Aquaculture. 2017;472:4–20.

    Article  CAS  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, et al. A safe operating space for humanity. Nature. 2009;461:472–5.

    Article  PubMed  CAS  Google Scholar 

  • Routray P, Suzuki T, Strüssmann CA, Takai R. Factors affecting the uptake of DMSO by the eggs and embryos of medaka, Oryzias latipes. Theriogenology. 2002;58:1483–96.

    Article  CAS  PubMed  Google Scholar 

  • The Royal Society. Ocean acidification due to increasing atmospheric carbon dioxide. London: The Royal Society; 2005. Policy Document 12/05.

    Google Scholar 

  • Saragusty J. Genome banking for vertebrates wildlife conservation. In: Katkov I, editor. Current frontiers in cryobiology. Rijeka: InTech; 2012. ISBN: 978-953-51-0191-8.

    Google Scholar 

  • Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction. 2011;141:1–19.

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Okada T, Miyashita S, Murata O, Kumai H. Completion of the Pacific bluefin tuna, Thunnus orientalis, life cycle under aquaculture conditions. Aquacult Res. 2005;36:413–21.

    Article  Google Scholar 

  • Schreck CB, Contreras-Sanchez Martin W, Fitzpatrick S. Effects of stress on fish reproduction, gamete quality and progeny. In: Lee C-S, Donaldson EM, editors. Reproductive biotechnology in finfish aquaculture. New York: Elsevier; 2001. p. 3–24.

    Chapter  Google Scholar 

  • Seki S, Kouya T, Hara T, Valdez DM Jr, Jin B, Kasai M, Edashige K. Exogenous expression of rat aquaporin-3 enhances permeability to water and cryoprotectants of immature oocytes in the zebrafish (Danio rerio). J Reprod Dev. 2007;53:597–604.

    Article  CAS  PubMed  Google Scholar 

  • Shaliutina A, Hulak M, Dzyuba B, Linhart O. Spermatozoa motility and variation in the seminal plasma proteome of Eurasian perch (Perca fluviatilis) during the reproductive season. Mol Reprod Dev. 2012;79:879–87.

    Article  CAS  PubMed  Google Scholar 

  • Shaliutina A, Hulak M, Li P, Sulc M, Dzyuba B, Linhart O. Comparison of protein fractions in seminal plasma from multiple sperm collections in sterlet (Acipenser ruthenus). Reprod Domest Anim. 2013;48:156–9.

    Article  CAS  PubMed  Google Scholar 

  • Sheehan RJ, Shasteen SP, Suresh AV, Kapuscinski AR, Seeb JE. Better growth in all-female diploid and triploid rainbow trout. Trans Am Fish Soc. 1999;128:491–8.

    Article  Google Scholar 

  • Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett. 2011;7:917–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith C, Wootton RJ. The remarkable reproductive diversity of teleost fishes. Fish Fish. 2016;17:1208–15.

    Article  Google Scholar 

  • Suquet M, Dreanno C, Fauvel C, Cosson J, Billard R. Cryopreservation of sperm in marine fish. Aquacult Res. 2000;31:231–43.

    Article  Google Scholar 

  • Taborsky M. Alternative reproductive tactics in fish. In: Oliveira RF, Taborsky M, Brockmann HJ, editors. Alternative reproductive tactics: an integrative approach. Cambridge: Cambridge University Press; 2008. p. 251–99.

    Chapter  Google Scholar 

  • Takeuchi Y, Yoshizaki G, Takeuchi T. Production of germ-line chimeras in rainbow trout by blastomere transplantation. Mol Reprod Dev. 2001;59:380–9.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Yoshizaki G, Takeuchi T. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol Reprod. 2003;69:1142–9.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Yoshizaki G, Takeuchi T. Surrogate broodstock produces salmonids. Nature. 2004;430:629–30.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka D, Takahashi A, Takai A, Ohta H, Ueno K. Attempt at cloning high-quality goldfish breed ‘Ranchu’ by fin-cultured cell nuclear transplantation. Zygote. 2012;20:79–85.

    Article  PubMed  Google Scholar 

  • Taranger GL, Aardal L, Hansen T, Kjesbu OS. Continuous light delays sexual maturation and increases growth of Atlantic cod (Gadus morhua L.) in sea cages. ICES J Mar Sci. 2006;63:365–75.

    Article  Google Scholar 

  • Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, et al. Control of puberty in farmed fish. Gen Comp Endocrinol. 2010;165:483–515.

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Rahman MS, Picha ME, Tan W. Impaired gamete production and viability in Atlantic croaker collected throughout the 20,000 km2 hypoxic region in the northern Gulf of Mexico. Mar Pollut Bull. 2015;101:182–92.

    Article  CAS  PubMed  Google Scholar 

  • Tiersch TR, Jenkins JA. Biosecurity considerations for cryopreserved gametes and early life stages of aquatic species. In: Lee CS, O’Bryen PJ, editors. Biosecurity in aquaculture production systems: exclusion of pathogens and other undesirables. Baton Rouge: World Aquaculture Society; 2003.

    Google Scholar 

  • Tiersch TR, Yang H, Jenkins JA, Dong Q. Sperm cryopreservation in fish and shellfish. Soc Reprod Fertil Suppl. 2007;65:493–508.

    PubMed  Google Scholar 

  • Tiersch TR, Yang H, Hu E. Outlook for development of high-throughput cryopreservation for small-bodied biomedical model species. Comp Biochem Physiol C. 2011;154:76–81.

    Google Scholar 

  • Torres L, Hu E, Tiersch TR. Cryopreservation in fish: current status and pathways to quality assurance and quality control in repository development. Reprod Fertil Dev. 2016;28:1105–15.

    Article  CAS  Google Scholar 

  • Trombley S, Schmitz M. Leptin in fish: possible role in sexual maturation in male Atlantic salmon. Fish Physiol Biochem. 2013;39:103–6.

    Article  CAS  PubMed  Google Scholar 

  • Tsai T, Rawson DM, Zhang T. Development of cryopreservation protocols for early stage zebrafish (Danio rerio) ovarian follicles using controlled slow cooling. Theriogenology. 2009;71:1226–33.

    Article  CAS  PubMed  Google Scholar 

  • Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics. 2014;9:803–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdez DM Jr, Hara T, Miyamoto A, Seki S, Jin B, Kasai M, Edashige K. Expression of aquaporin-3 improves the permeability to water and cryoprotectants of immature oocytes in the medaka (Oryzias latipes). Cryobiology. 2006;53:160–8.

    Article  CAS  PubMed  Google Scholar 

  • Valdez DM Jr, Tsuchiya R, Seki S, Saida N, Niimi S, Koshimoto C, Matsukawa K, Kasai M, Edashige K. A trial to cryopreserve immature medaka (Oryzias latipes) oocytes after enhancing their permeability by exogenous expression of aquaporin 3. J Reprod Dev. 2013;59:205. https://doi.org/10.1262/jrd.2012-179.

    Article  CAS  PubMed  Google Scholar 

  • Vermeirsen ELM, Scott AP, Mylonas CC, Zohat Y. Gonadotrophin-releasing hormone agonist stimulates milt fluidity and plasma concentrations of 17,20β-dihydroxylated and 5β-reduced, 3α-hydroxylated C21 steroids in male plaice (Pleuronectes platessa). Gen Comp Endocrinol. 1998;112:163–77.

    Article  Google Scholar 

  • Viveiros ATM, Orfão LH, Leal MC. Biologia e conservação de espermatozoides. In: Baldisserotto B, Cyrino JEP, Urbinati EC, editors. Biologia e Fisiologia de Peixes Neotropicais de Água Doce. Jaboticabal: FUNEP, UNESP; 2014. p. 307–27.

    Google Scholar 

  • Wakamatsu Y, Pristyaznhyuk I, Ju B, Niwa K, Ladygina T, Kinoshit M, et al. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias Latipes). Proc Natl Acad Sci U S A. 2001;98:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xiao Z, Li L, Fan W, Li SW. Novel needle immersed vitrification: a practical and convenient method with potential advantages in mouse and human ovarian tissue cryopreservation. Hum Reprod. 2008;23:2256–65.

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Teletchea F, Kestemont P, Milla S, Fontaine P. Photothermal control of the reproductive cycle in temperate fishes. Rev Aquac. 2010;2:209–22.

    Article  Google Scholar 

  • Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep. 2016;6:21284. https://doi.org/10.1038/srep21284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildt DE. Genetic resource banks for conserving wildlife species: justification, examples and becoming organized on a global basis. Anim Reprod Sci. 1992;28:247–57.

    Article  Google Scholar 

  • Witte F, Goldschmidt T, Wanink J, van Oijen M, Goudswaard K, Witte-Maas E, Bouton N. The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fishes. 1992;34:1–28.

    Article  Google Scholar 

  • Xin M, Siddique MAM, Dzyuba B, Cuevas-Uribe R, Shaliutina-Kolesova A, Linhart O. Progress and challenges of fish sperm vitrification: a mini review. Theriogenology. 2017;98:16–22.

    Article  PubMed  Google Scholar 

  • Yang H, Carmichael C, Varga ZM, Tiersch TR. Development of a simplified and standardized protocol with the potential for high-throughput for sperm cryopreservation in zebrafish, Danio rerio. Theriogenology. 2007;68:128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazawa R, Takeuchi Y, Higuchi K, Yatabe T, Kabeya N, Yoshizaki G. Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol Reprod. 2010;82:896–904.

    Article  CAS  PubMed  Google Scholar 

  • Yazawa R, Takeuchi Y, Morita T, Ishida M, Yoshizaki G. The Pacific bluefin tuna (Thunnus orientalis) dead end gene is suitable as a specific molecular marker of type A spermatogonia. Mol Reprod Dev. 2013;80:871–80.

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Li C-J, Yue H-M, Hao D, Yang XG, Yoshino T, Hayashida T, Takeuchi Y, Wei Q-W. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology. 2017;94:37–47.

    Article  PubMed  Google Scholar 

  • Yoshizaki G, Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res. 2018;29:103–10.

    Article  PubMed  Google Scholar 

  • Yoshizaki G, Yazawa R. Application of surrogate brookstock technology in aquaculture. Fish Sci. 2019; https://doi.org/10.1007/s12562.

  • Yoshizaki G, Takeuchi Y, Kobayashi T, et al. Primordial germ cells: the blueprint for a piscine life. Fish Physiol Biochem. 2002;26:3–12.

    Article  CAS  Google Scholar 

  • Yoshizaki G, Ichikawa M, Hayashi M, et al. Sexual plasticity of ovarian germ cells in rainbow trout. Development. 2010;137:1227–30.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Fujinuma K, Iwasaki Y, Okutsu T, Shikina S, Yazawa R, Takeuchi Y. Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources. Comp Biochem Physiol Part D Genomics Proteomics. 2011;6:55–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Lubzens E. Cryopreservation of fish oocytes. In: Cabrite E, Robles V, Herráez P, editors. Methods in reproductive aquaculture: marine and freshwater species. Boca Raton: CRC Press; 2009. p. 251–63.

    Google Scholar 

  • Zhu Z, Li G, He L, Chen S. Novel gene transfer into fertilized eggs of goldfish (Carassius auratus L 1758). J Appl Ichthyol. 1985;1:31–4.

    Article  CAS  Google Scholar 

  • Zilli L, Vilella S. Effect of cryopreservation on bio-chemical parameters, DNA integrity, protein profile and phosphorylation state of proteins of seawater fish spermatozoa. In: Katkov I, editor. Current frontiers in cryobiology. Rijeka: InTech; 2012. p. 391–414.

    Google Scholar 

  • Zohar Y, Mylonas CC. Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture. 2001;197:99–136.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayer, I. (2019). The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes. In: Comizzoli, P., Brown, J., Holt, W. (eds) Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-030-23633-5_7

Download citation

Publish with us

Policies and ethics