Advertisement

Cryopreservation as a Tool for Reef Restoration: 2019

  • Mary HagedornEmail author
  • Rebecca Spindler
  • Jonathan Daly
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1200)

Abstract

Throughout the world coral reefs are being degraded at unprecedented rates. Locally, reefs are damaged by pollution, nutrient overload and sedimentation from out-dated land-use, fishing and mining practices. Globally, increased greenhouse gases are warming and acidifying oceans, making corals more susceptible to stress, bleaching and newly emerging diseases. The coupling of climate change impacts and local anthropogenic stressors has caused a widespread and well-recognized reef crisis. While the establishment and enforcement of marine protected areas and preventing the acceleration of climate change are essential to management of these stressors, the inexorable impacts of climate change will continue to cause declines in genetic diversity and population viability. Gamete cryopreservation has already acted as an effective insurance policy to maintain the genetic diversity of many wildlife species, and has now begun to be explored and applied to coral conservation. Cryopreservation can act to preserve reef biodiversity and genetic diversity. To date, we have had a great deal of success with cryopreserving sperm from ~30 coral species of coral species. Moreover, we are creating the basic science to freeze and thaw coral larvae that can soon be used to help secure and restore reefs. Building on these successes, we have established genetic banks using frozen samples and use those samples to help mitigate threats to the Great Barrier Reef and other areas.

Keywords

Coral Reef Cryobiology Cryobanking Assisted reproduction Invertebrate 

References

  1. Anthony KRN. Coral reefs under climate change and ocean acidification: challenges and opportunities for management and policy. Annu Rev Environ Resour. 2016;41:59–81.CrossRefGoogle Scholar
  2. Baums IB. How to maximize future adaptive potential of restored coral populations. In: Reef Futures, Key Largo; 2018.Google Scholar
  3. Bellwood DR, Hughes TP, Folke C, Nystrom M. Confronting the coral reef crisis. Nature. 2004;429:827–33.CrossRefGoogle Scholar
  4. Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep. 2016;6:23619.CrossRefGoogle Scholar
  5. Bruckner AW (2002) Proceedings of the Caribbean Acropora workshop: potential application of the U.S. endangered species act as a conservation strategy.Google Scholar
  6. Buddemeier RW, Ware JR. Coral reef decline in the Caribbean. Science. 2003;302:391–3. author reply 391–393.CrossRefGoogle Scholar
  7. Cesar HLP. Coral reefs: their functions, threats and economic value. In: Cesar HLP, editor. Collected essays on the economics of coral reefs. Kalmar: CORDIO, University of Kalmar; 2000. p. 14–39.Google Scholar
  8. Combosch DJ, Vollmer SV. Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the tropical eastern Pacific. PLoS One. 2011;6:e21200.CrossRefGoogle Scholar
  9. Cox EF, Ward S. Impact of elevated ammonium on reproduction in two Hawaiian scleractinian corals with different life history patterns. Mar Pollut Bull. 2002;44:1230–5.CrossRefGoogle Scholar
  10. Daly J, Zuchowicz N, Nunez Lendo CI, Khosla K, Lager C, Henley EM, Bischof J, Kleinhans FW, Lin C, Peters EC, Hagedorn M. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci Rep. 2018;8:15714.CrossRefGoogle Scholar
  11. Daly J, Zuchowicz N, Hagedorn M. Proof of competence in laser-warmed coral larvae. 2019a (in prep).Google Scholar
  12. Daly J, Zuchowicz N, Hobbs R, O’Brien J, Bay LK, Hagedorn M. Cryopreservation can assist gene flow on the Great Barrier Reef. 2019b (in prep).Google Scholar
  13. Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348:1460–2.CrossRefGoogle Scholar
  14. Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41:187–96.CrossRefGoogle Scholar
  15. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR. Long-term region-wide declines in Caribbean corals. Science. 2003;301:958–60.CrossRefGoogle Scholar
  16. GBRMPA. Final report: 2016 coral bleaching event on the Great Barrier Reef, Townsville. 2017.Google Scholar
  17. Glynn PW. Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol. 1996;2:495–509.CrossRefGoogle Scholar
  18. Glynn PW, D’Crox L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs. 1990;8:181–91.CrossRefGoogle Scholar
  19. Goreau TJ, Hayes RL, McClanahan T. Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol. 2000;14:5–15.CrossRefGoogle Scholar
  20. Great BarrierReef Outlook Report. 2009. http://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/429/1/Great-Barrier-Reef-outlook-report-2009-in-brief.pdfGoogle Scholar
  21. Hagedorn M, Carter VL. Seasonal preservation success of the marine dinoflagellate coral symbiont, Symbiodinium sp. PLoS One. 2015;10:e0136358.CrossRefGoogle Scholar
  22. Hagedorn M, Carter VL, Steyn RA, Krupp D, Leong JA, Lang RP, Tiersch TR. Preliminary studies of sperm cryopreservation in the mushroom coral, Fungia scutaria. Cryobiology. 2006a;52:454–8.CrossRefGoogle Scholar
  23. Hagedorn M, Pan R, Cox EF, Hollingsworth L, Krupp D, Lewis TD, Leong JC, Mazur P, Rall WF, MacFarlane DR, Fahy G, Kleinhans FW. Coral larvae conservation: physiology and reproduction. Cryobiology. 2006b;52:33–47.CrossRefGoogle Scholar
  24. Hagedorn M, Carter VL, Leong JC, Kleinhans FW. Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology. 2010;60:147–58.CrossRefGoogle Scholar
  25. Hagedorn M, Carter V, Martorana K, Paresa MK, Acker J, Baums IB, Borneman E, Brittsan M, Byers M, Henley M, Laterveer M, Leong JA, McCarthy M, Meyers S, Nelson BD, Petersen D, Tiersch T, Uribe RC, Woods E, Wildt D. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One. 2012;7:e33354.CrossRefGoogle Scholar
  26. Hagedorn M, Farrell A, Carter VL. Cryobiology of coral fragments. Cryobiology. 2013;66:17–23.CrossRefGoogle Scholar
  27. Hagedorn M, Carter VL, Lager C, Camperio Ciani JF, Dygert AN, Schleiger RD, Henley EM. Bleaching effects on coral reproduction. Reprod Fertil Dev. 2016;28:1061–71.CrossRefGoogle Scholar
  28. Hagedorn M, Carter VL, Henley EM, van Oppen MJH, Hobbs R, Spindler RE. Producing coral offspring with cryopreserved sperm: a tool for coral reef restoration. Sci Rep. 2017;7:14432.CrossRefGoogle Scholar
  29. Hagedorn M, Page CA, Oneill K, Flores DM, Tichy L, Chamberland VF, Lager C, Zuchowicz N, Lohr K, Blackburn H, Vardi T, Moore J, Moore T, Vermeij MJA, Marhaver KL. Successful demonstration of assisted gene flow in the threatened coral Acropora palmata across genetically-isolated Caribbean populations using cryopreserved sperm. bioRxiv. 2018:492447.Google Scholar
  30. Hammerstedt RH, Graham JK, Nolan JP. Cryopreservation of mammalian sperm: what we ask them to survive. J Androl. 1990;111:73–88.Google Scholar
  31. Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.CrossRefGoogle Scholar
  32. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301:929–33.CrossRefGoogle Scholar
  33. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M. Coral reefs in the Anthropocene. Nature. 2017a;546:82–90.CrossRefGoogle Scholar
  34. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-Y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK. Global warming and recurrent mass bleaching of corals. Nature. 2017b;543:373–7.CrossRefGoogle Scholar
  35. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Coral Reefs. 2018;359:80–3.Google Scholar
  36. IPCC. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge; 2007.Google Scholar
  37. IUCN. Coral reefs. Gland: International Union for Conservation of Nature; 2019.Google Scholar
  38. Levin RL, Miller TW. An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells. Cryobiology. 1981;18:32–48.CrossRefGoogle Scholar
  39. Levitan DR, Boudreau W, Jara J, Knowlton N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar Ecol Prog Ser. 2014;515:1–10.CrossRefGoogle Scholar
  40. Mazur P. Cryobiology: the freezing of biological systems. Science. 1970;168:939–49.CrossRefGoogle Scholar
  41. Mazur P. Freezing of living cells: mechanisms and implications. Am J Phys. 1984;247(3. Pt 1):C125–42.CrossRefGoogle Scholar
  42. Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1997;14:251–72.CrossRefGoogle Scholar
  43. Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999;29:215–33.CrossRefGoogle Scholar
  44. O’Mahony J, Simes R, Redhill D, Heaton K, Atkinson C, Hayward E, Nguyen M. At what price? The economic, social and icon value of the Great Barrier Reef: Deloitte Access Economics; 2017.Google Scholar
  45. Page C, Muller E, Vaughan D. Microfragmenting for the successful restoration of slow growing massive corals. Ecol Eng. 2018;123:86–94.CrossRefGoogle Scholar
  46. Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJ, Paredes G, Warner RR, Jackson JB. Global trajectories of the long-term decline of coral reef ecosystems. Science. 2003;301:955–8.CrossRefGoogle Scholar
  47. Rall WF. Advances in the cryopreservation of embryos and prospects for the application to the conservation of salmonid fishes. In: Thorgaard GH, Cloud JG, editors. Genetic conservation of salmonid fishes. New York: Plenum Press; 1993. p. 137–58.CrossRefGoogle Scholar
  48. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature. 1985;313:573–5.CrossRefGoogle Scholar
  49. Shearer TL, Porto I, Zubillaga AL. Restoration of coral populations in light of genetic diversity estimates. Coral Reefs. 2009;28:727–33.CrossRefGoogle Scholar
  50. Taylor R, Adams GD, Boardman CF, Wallis RG. Cryoprotection—permeant vs nonpermeant additives. Cryobiology. 1974;11:430–8.CrossRefGoogle Scholar
  51. Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci U S A. 2004;101:13531–5.CrossRefGoogle Scholar
  52. Ward S, Harrison P, Hoegh-Guldberg O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the ninth international coral reef symposium, Bali, 23–27 Oct 2000. 2002;2:1123–8.Google Scholar
  53. Wildt DE, Comizzoli P, Pukazhenthi B, Songsasen N. Lessons from biodiversity—the value of nontraditional species to advance reproductive science, conservation, and human health. Mol Reprod Dev. 2010;77:397–409.CrossRefGoogle Scholar
  54. Wolf KN, Wildt DE, Vargas A, Marinari PE, Ottinger MA, Howard JG. Reproductive inefficiency in male black-footed ferrets (Mustela nigripes). Zoo Biol. 2001;19:517–28.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mary Hagedorn
    • 1
    • 2
    Email author
  • Rebecca Spindler
    • 3
  • Jonathan Daly
    • 1
    • 2
  1. 1.Smithsonian Conservation Biology Institute, Smithsonian InstitutionWashington, DCUSA
  2. 2.Hawaii Institute of Marine Biology, University of HawaiiKaneoheUSA
  3. 3.Bush Heritage AustraliaMelbourneAustralia

Personalised recommendations