Skip to main content

Amphibian Assisted Reproductive Technologies: Moving from Technology to Application

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1200)

Abstract

Amphibians have experienced a catastrophic decline since the 1980s driven by disease, habitat loss, and impacts of invasive species and face ongoing threats from climate change. About 40% of extant amphibians are under threat of extinction and about 200 species have disappeared completely. Reproductive technologies and biobanking of cryopreserved materials offer technologies that could increase the efficiency and effectiveness of conservation programs involving management of captive breeding and wild populations through reduced costs, better genetic management and reduced risk of species extinctions. However, there are relatively few examples of applications of these technologies in practice in on-the-ground conservation programs, and no example that we know of where genetic diversity has been restored to a threatened amphibian species in captive breeding or in wild populations using cryopreserved genetic material. This gap in the application of technology to conservation programs needs to be addressed if assisted reproductive technologies (ARTs) and biobanking are to realise their potential in amphibian conservation. We review successful technologies including non-invasive gamete collection, IVF and sperm cryopreservation that work well enough to be applied to many current conservation programs. We consider new advances in technology (vitrification and laser warming) of cryopreservation of aquatic embryos of fish and some marine invertebrates that may help us to overcome factors limiting amphibian oocyte and embryo cryopreservation. Finally, we address two case studies that illustrate the urgent need and the opportunity to implement immediately ARTs, cryopreservation and biobanking to amphibian conservation. These are (1) managing the biosecurity (disease risk) of the frogs of New Guinea which are currently free of chytridiomycosis, but are at high risk (2) the Sehuencas water frog of Bolivia, which until recently had only one known surviving male.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-23633-5_14
  • Chapter length: 51 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-23633-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5

References

  • Acharjee S, Maiti K, Soh JM, Im W-B, Seong JY, Kwon HB. Differential desensitization and internalization of three different bullfrog gonadotropin-releasing hormone receptors. Mol Cells. 2002;14:101–7.

    CAS  PubMed  Google Scholar 

  • Adams MJ. Pond permanence and the effects of exotic vertebrates on anurans. Ecol Appl. 2000;10:559–68.

    CrossRef  Google Scholar 

  • Alonso-Bedate M, Carballada R, Delgado MJ. Effects of melatonin on gonadal steroids and glucose plasma levels in frogs (Rana perezi and Rana temporaria). J Pineal Res. 1990;8:79–89.

    CrossRef  CAS  PubMed  Google Scholar 

  • Alroy J. Current extinction rates of reptiles and amphibians. Proc Natl Acad Sci. 2015;112(42):13003–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Anstis M. Tadpoles and frogs of Australia. 2nd ed. Sydney: New Holland; 2017.

    Google Scholar 

  • Araujo MB, et al. Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr. 2006;33:1712–28.

    CrossRef  Google Scholar 

  • Argyle CE, Harper JC, Davies MC. Oocyte cryopreservation: where are we now? Hum Reprod Update. 2016;22:440–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Arregui L, Boveda P, Gosalvez J, Kouba AJ. Seasonal effect on sperm cryopreservation in Epidalea calamita (Anura: Bufonidae). Cryobiology. 2018;85:177.

    CrossRef  Google Scholar 

  • Austin C, Hayden C, Bigilale I, Dahl C, Anaminiato J. Checklist and comments on the terrestrial amphibian and reptile fauna from Utai, Northwestern Papua New Guinea. Herpetol Rev. 2008;39(1):40–6.

    Google Scholar 

  • Balinsky BI. Cleavage. In: An introduction to embryology. 4th ed. Philadelphia: W.B. Saunders; 1975a. p. 101–47.

    Google Scholar 

  • Balinsky BI. Morphological aspects of gastrulation and primary organ formation. In: An Introduction to embryology. 4th ed. Philadelphia: W.B. Saunders; 1975b. p. 151–88.

    Google Scholar 

  • Banks C, Clulow S, McGeorge M, Bower D. A future-proofing plan for Papua New Guinea frogs. AArk Newslett. 2018;42:16–7.

    Google Scholar 

  • Barton HL, Gutman SL. Low temperature preservation of toad spermatozoa (Genus Bufo). Texas J Sci. 1972;23:363–70.

    Google Scholar 

  • Beesley SG, Costanzo JP, Lee RE. Cryopreservation of spermatozoa from freeze-tolerant and -intolerant anurans. Cryobiology. 1998;37:155–62.

    CrossRef  CAS  PubMed  Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci. 1998;95:9031–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischof J. Nanoparticle and metal form heating for improved cryopreservation. Cryobiology. 2018;85:164.

    CrossRef  Google Scholar 

  • Bishop PJ, Angulo A, Lewis JP, Moore RD, Rabb GB, Moreno JG. The amphibian extinction crisis—what will it take to put the action into the Amphibian Conservation Action Plan? SAPIENS. 2012;(5.2). http://sapiens.revues.org/1406.

  • Bower DS, Lips K, Schwarzkopf L, Georges A, Clulow S. Amphibians on the brink. Science. 2017;357(6350):454–5.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bower D, Lips K, Amepou Y, Richards S, Dahl C, Nagombi E, Supuma M, Dabek L, Alford R, Schwarzkopf L, Ziembicki M, Noro J, Hamidy A, Gillespie G, Berger L, Eisemberg C, Li Y, Liu X, Jennings C, Tjaturadi B, Peters A, Krockenberger A, Nason D, Kusrini M, Webb R, Skerratt L, Banks C, Mack A, Georges A, Clulow S. Island of opportunity: can New Guinea protect amphibians from a globally emerging pathogen? Front Ecol Environ. 2019; https://doi.org/10.1002/fee.2057.

  • Bradford DF. Allotopic distribution of native frogs and introduced fishes in high Sierra Nevada lakes of California: implication of the negative effect of fish introductions. Copeia. 1989;1989:775–8.

    CrossRef  Google Scholar 

  • Browne RK, Clulow J, Mahony M, Clark A. Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm. Cryobiology. 1998;37:339–45.

    CrossRef  CAS  PubMed  Google Scholar 

  • Browne RK, Clulow J, Mahony M. Short-term storage of cane toad (Bufo marinus) gametes. Reproduction. 2001;121:167–73.

    CrossRef  CAS  PubMed  Google Scholar 

  • Browne RK, Clulow J, Mahony M. The effect of saccharides on the post-thaw recovery of cane toad (Bufo marinus) spermatozoa. Cryo Letters. 2002a;23:121–8.

    Google Scholar 

  • Browne RK, Clulow J, Mahony M. The short-term storage and cryopreservation of spermatozoa from Hylid and Myobatrachid frogs. CryoLetters. 2002b;23:129–36.

    CAS  PubMed  Google Scholar 

  • Browne RK, Clulow J, Mahony M. A comparison of sucrose, saline, and saline with egg-yolk diluents on the cryopreservation of cane toad (Bufo marinus) sperm. Cryobiology. 2002c;44:251–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Browne RK, Davis J, Pomering M, Clulow J. Storage of cane toad (Bufo marinus) sperm for 6 days at 0 °C with subsequent cyropreservation. Reprod Fertil Dev. 2002d;14:267–73.

    CrossRef  CAS  PubMed  Google Scholar 

  • Browne RK, Seratt J, Vance C, Kouba A. Hormonal priming, induction of ovulation and in-vitro fertilization of the endangered Wyoming toad (Bufo baxteri). Reprod Biol Endocrinol. 2006a;4:34.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Browne RK, Li H, Seratt J, Kouba A. Progesterone improves the number and quality of hormone induced Fowler toad (Bufo fowleri) oocytes. Reprod Biol Endocrinol. 2006b;4:3.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Browne R, Gaikhorst G, Vitali S, Roberts JD, Matson P. Exogenous hormones induce poor rates of oviposition in the anurans, Litoria moorei and L. aurea. Appl Herpetol. 2008;5(1):81–6.

    CrossRef  Google Scholar 

  • Browne R, Janzen P, Bagaturov M, van Houte D. Amphibian keeper conservation breeding programs. J Zool Res. 2018;2:29–46.

    Google Scholar 

  • Browne RK, et al. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology. 2019;133:187–200.

    CrossRef  PubMed  Google Scholar 

  • Buchholz DR, Fu L, Shi YB. Cryopreservation of Xenopus transgenic lines. Mol Reprod Dev. 2004;67:65–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Byrne P, Silla A. Hormonal induction of gamete release, and in-vitro fertilisation, in the critically endangered Southern Corroboree Frog, Pseudophryne corroboree. Reprod Biol Endocrinol. 2010;8:144.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Calado LL. Coleta e criopreservação do sêmen de rã-touro. Universidade Federal de Viçosa; 2009.

    Google Scholar 

  • Calvi SL, Maisse G. Cryopreservation of Rainbow Trout (Oncorhynchus mykiss) blastomeres: influence of embryo stage on postthaw survival rate. Cryobiology. 1998;36:255–62.

    CrossRef  CAS  PubMed  Google Scholar 

  • Calvi SL, Maisse G. Cryopreservation of carp (Cyprinus carpio) blastomeres. Aquat Living Resour. 1999;12:71–4.

    CrossRef  Google Scholar 

  • Campbell L, Bower DS, Clulow S, Stockwell M, Clulow J, Mahony M. Interaction between temperature and sublethal infection with the amphibian chytrid fungus impacts a susceptible frog species. Sci Rep. 2019;9:83.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardona-Costa J, García-Ximénez F. Vitrification of zebrafish embryo blastomeres in microvolumes. CryoLetters. 2007;28:303–9.

    CAS  PubMed  Google Scholar 

  • Carey C, Alexander MA. Climate change and amphibian declines: is there a link? Divers Distrib. 2003;9:111–21.

    CrossRef  Google Scholar 

  • Ceballos G, Ehrlich PR, Dirzo R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci. 2017;114:E6089–96.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty M, Burmeister SS. Estradiol induces sexual behavior in female túngara frogs. Horm Behav. 2009;55:106–12.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chakraborty M, Burmeister SS. Effects of estradiol on neural responses to social signals in female túngara frogs. J Exp Biol. 2015;218:3671–7.

    CrossRef  PubMed  Google Scholar 

  • Chanson J, et al. The State of the world’s amphibians. In: Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE, editors. Threatened amphibians of the world. Barcelona, Gland, and Arlington: Lynx Edicions, IUCN, and Conservation International; 2008. p. 33–52.

    Google Scholar 

  • Clulow J, Clulow S. Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the arts up to speed. Reprod Fertil Dev. 2016;28:1116–32.

    CrossRef  Google Scholar 

  • Clulow S, Swan M. A complete guide to frogs of Australia. Sydney: Australian Geographic; 2018. 336 pp.

    Google Scholar 

  • Clulow J, Mahony M, Browne R, Pomering M, Clark A. Applications of assisted reproductive technologies (ART) to endangered anuran amphibians. In: Campbell A, editor. Declines and disappearances of Australian frogs. Canberra: Environment Australia; 1999. p. 219–25.

    Google Scholar 

  • Clulow J, Clulow S, Guo J, French AJ, Mahony MJ, Archer M. Optimisation of an oviposition protocol employing human chorionic and pregnant mare serum gonadotropins in the barred frog Mixophyes fasciolatus (Myobatrachidae). Reprod Biol Endocrinol. 2012;10(1):60.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Clulow J, Trudeau VL, Kouba AJ. Amphibian declines in the twenty-first century: why we need assisted reproductive technologies. In: Holt WV, et al., editors. Reproductive sciences in animal conservation, Advances in experimental medicine and biology 753. New York: Springer; 2014. p. 275–316. https://doi.org/10.1007/978-1-4939-0820-2_12.

    CrossRef  Google Scholar 

  • Clulow J, Pomering M, Herbert D, Upton R, Calatayud N, Clulow S, Mahony M, Trudeau V. Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: a review. Gen Comp Endocrinol. 2018a;265:141–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Clulow S, Gould J, James H, Stockwell M, Clulow J, Mahony M. Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: implications for translocations. J Appl Ecol. 2018b;55:830–40.

    CrossRef  CAS  Google Scholar 

  • Collin F, Chartrel N, Fasolo A, Conlon JM, Vandesande F, Vaudry H. Distribution of two molecular forms of gonadotropin-releasing hormone (GnRH) in the central nervous system of the frog Rana ridibunda. Brain Res. 1995;703:111–28.

    CrossRef  CAS  PubMed  Google Scholar 

  • Corley-Smith GE, Lim CJ, Brandhorst BP. Production of androgenetic zebrafish (Danio rerio). Genetics. 1996;142:1265–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costanzo JP, Mugnano JA, Wehrheim HM, Lee RE. Osmotic and freezing tolerance in spermatozoa of freeze-tolerant and -intolerant frogs. Am J Physiol Regul Integr Comp Physiol. 1998;275:R713–9.

    CrossRef  CAS  Google Scholar 

  • Creighton AE, Wilczynski W. Influence of dopamine D2-type receptors on motor behaviors in the green tree frog, Hyla cinerea. Physiol Behav. 2014;127:71–80.

    CrossRef  CAS  PubMed  Google Scholar 

  • Creighton A, Satterfield D, Chu J. Effects of dopamine agonists on calling behavior in the green tree frog, Hyla cinerea. Physiol Behav. 2013;116:54–9.

    CrossRef  PubMed  CAS  Google Scholar 

  • Crossland MR, Brown GP, Anstis M, Shilton CM, Shine R. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus). Biol Conserv. 2008;141:2387–94.

    CrossRef  Google Scholar 

  • Daly J, Zuchowicz N, Nuñez Lendo CI, Khosla K, Lager C, Henley M, Bischof J, Kleinhans FW, Lin C, Peters E, et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Scientific Reports. 2018; https://doi.org/10.1038/s41598-018-34035-0.

  • Dash SN, Routray P, Dash C, Guru BC, Swain P, Sarangi N. Use of the nontoxic cryoprotectant trehalose enhances recovery and function of fish embryonic stem cells following cryogenic storage. Curr Stem Cell Res Ther. 2008;3:277–87.

    CrossRef  CAS  PubMed  Google Scholar 

  • Davis A, Abraham E, McEvoy E, Sonnenfeld S, Lewis C, Hubbard CS, Dolence EK, Rose JD, Coddington E. Corticosterone suppresses vasotocin-enhanced clasping behavior in male rough-skinned newts by novel mechanisms interfering with V1a receptor availability and receptor-mediated endocytosis. Horm Behav. 2015;69:39–49.

    CrossRef  CAS  PubMed  Google Scholar 

  • del Pino EM, Venegas-Ferrín M, Romero-Carvajal A, Montenegro-Larrea P, Sáenz-Ponce N, Moya IM, Alarcón I, Sudou N, Yamamoto S, Taira M. A comparative analysis of frog early development. Proc Natl Acad Sci U S A. 2007;104:11882–8.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Della Togna Nieto G. Structural and functional characterization of the Panamanian golden frog (Atelopus zeteki) spermatozoa—impact of medium osmolality and cryopreservation on motility and cell viability. Dissertation, University of Maryland. 2015.

    Google Scholar 

  • Deng J, Carbajal L, Evaul K, Rasar M, Jamnongjit M, Hammes SR. Nongenomic steroid-triggered oocyte maturation: of mice and frogs. Steroids. 2009;74:595–601.

    CrossRef  CAS  PubMed  Google Scholar 

  • Derakhshan Z, Nokhbatolfoghahai M, Zahiri S. Cryopreservation of Bufotes viridis embryos by vitrification. Cryobiology. 2017;75:60–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Di Berardino MA. Genomic potential of differentiated cells. New York: Columbia University Press; 1997.

    Google Scholar 

  • Diez C, Munoz M, Caamano J, Gomez E. Cryopreservation of the bovine oocyte: current status and perspectives. Reprod Domest Anim. 2012;47:76–83.

    CrossRef  PubMed  Google Scholar 

  • Donnelly MA, Crump ML. Potential effects of climate change on two neotropical amphibian assemblages. Clim Change. 1998;39:541–61.

    CrossRef  Google Scholar 

  • Du Pasquier D, Dupré A, Jessus C. Unfertilized xenopus eggs die by bad-dependent apoptosis under the control of cdk1 and jnk. PLoS One. 2011;6:e23672.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Duellman WE, Trueb L. Biology of amphibians. Baltimore: Johns Hopkins University Press; 1994.

    Google Scholar 

  • Dufour S, Weltzien FA, Sebert ME, Le Belle N, Vidal B, Vernier P, Pasqualini C. Dopaminergic inhibition of reproduction in teleost fishes: ecophysiological and evolutionary implications. Ann N Y Acad Sci. 2005;1040:9–21.

    CrossRef  CAS  PubMed  Google Scholar 

  • Edwards DL, Mahony MJ, Clulow J. Effect of sperm concentration, medium osmolality, and oocyte storage on artificial fertilisation success in a myobatrachid frog (Limnodynastes tasmaniensis). Reprod Fertil Dev. 2004;16:347–54.

    CrossRef  CAS  PubMed  Google Scholar 

  • Elinson RP, del Pino EM. Developmental diversity of amphibians. Wiley Interdiscip Rev Dev Biol. 2012;1:345–69.

    CrossRef  CAS  PubMed  Google Scholar 

  • Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod. 2009;80:70–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Evaul K, Jamnongjit M, Bhagavath B, Hammes SR. Testosterone and progesterone rapidly attenuate plasma membrane Gβγ-mediated signaling in Xenopus laevis oocytes by signaling through classical steroid receptors. Mol Endocrinol. 2007;21:186–96.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fahy GM, MacFarlane D, Angell C, Meryman H. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–26.

    CrossRef  CAS  PubMed  Google Scholar 

  • Figiel CR. Cryopreservation of sperm from the axolotl Ambystoma mexicanum: implications for conservation. Herpetol Conserv Biol. 2013;8(3):748–55.

    Google Scholar 

  • Fitzsimmons C, McLaughlin EA, Mahony MJ, Clulow J. Optimisation of handling, activation and assessment procedures for Bufo marinus spermatozoa. Reprod Fertil Dev. 2007;19(4):594–601.

    CrossRef  CAS  PubMed  Google Scholar 

  • Foden WB, Butchart SH, Stuart SN, Vié J-C, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One. 2013;8:e65427.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Franěk R, Marinović Z, Lujić J, Urbányi B, Fučíková M, Kašpar V, Pšenička M, Horváth Á. Cryopreservation and transplantation of common carp spermatogonia. bioRxiv. 2018:429449.

    Google Scholar 

  • Frankham R. Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv. 2010;143(9):1919–27.

    CrossRef  Google Scholar 

  • Frankham R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol. 2015;24(11):2610–8.

    CrossRef  PubMed  Google Scholar 

  • Gibbs JP, Breisch AR. Climate warming and calling phenology of frogs near Ithaca, New York, 1900-1999. Conserv Biol. 2001;15:1175–8.

    CrossRef  Google Scholar 

  • Gillespie LL, Armstrong JB. Production of androgenetic diploid axolotls by suppression of first cleavage. J Exp Zool. 1980;213:423–5.

    CrossRef  Google Scholar 

  • Godoy LC, Streit DP Jr, Zampolla T, Bos-Mikich A, Zhang T. A study on the vitrification of stage III zebrafish (Danio rerio) ovarian follicles. Cryobiology. 2013;67:347–54.

    CrossRef  CAS  PubMed  Google Scholar 

  • Goodsell JA, Kats LB. Effect of introduced mosquitofish on Pacific treefrogs and the role of alternative prey. Conserv Biol. 1999;13:921–4.

    CrossRef  Google Scholar 

  • Gordon NM, Gerhardt HC. Hormonal modulation of phonotaxis and advertisement-call preferences in the gray treefrog (Hyla versicolor). Horm Behav. 2009;55:121–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Guan M, Rawson DM, Zhang T. Cryopreservation of zebrafish (Danio rerio) oocytes by vitrification. Cryo Letters. 2010;31:230–8.

    CAS  PubMed  Google Scholar 

  • Guenther JF, Seki S, Kleinhans FW, Edashige K, Roberts DM, Mazur P. Extra- and intra-cellular ice formation in stage I and II Xenopus laevis oocytes. Cryobiology. 2006;52:401–16.

    CrossRef  CAS  PubMed  Google Scholar 

  • Günther R. Derived reproductive modes in New Guinean anuran amphibians and description of a new species with paternal care in the genus Callulops (Microhylidae). J Zool. 2006;268:153–70.

    CrossRef  Google Scholar 

  • Gurdon JB. The effects of ultraviolet irradiation on uncleaved eggs of Xenopus laevis. Q J Microsc Sci. 1960;101:299–311.

    Google Scholar 

  • Gurdon J, Byrne J. The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A. 2003;100:8048–52.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon JB, Hopwood N. The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol. 2000;44:43–50.

    CAS  PubMed  Google Scholar 

  • Gurdon JB, Uehlinger V. “Fertile” intestine nuclei. Nature. 1966;210:1240–1.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gurdon JB, Laskey RA, Reeves OR. The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J Embryol Exp Morphol. 1975;34:93–112.

    CAS  PubMed  Google Scholar 

  • Hagedorn M, Kleinhans FW. Problems and prospects in cryopreservation of fish embryos. In: Tiersch TR, Green CC, editors. Cryopreservation in aquatic species. 2nd ed. Baton Rouge: World Aquaculture Society; 2011. p. 483–502.

    Google Scholar 

  • Hagedorn M, Hsu EW, Pilatus U, Wildt DE, Rall WF, Blackband SJ. Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system. Proc Natl Acad Sci U S A. 1996;93:7454–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn M, Hsu E, Kleinhans FW, Wildt DE. New approaches for studying the permeability of fish embryos: toward successful cryopreservation. Cryobiology. 1997a;34:335–47.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hagedorn M, Kleinhans FW, Freitas R, Liu J, Hsu EW, Wildt DE, et al. Water distribution and permeability of zebrafish embryos, Brachydanio rerio. J Exp Zool. 1997b;278:356–71.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hagedorn M, Kleinhans FW, Wildt DE, Rall WF. Chill sensitivity and cryoprotectant permeability of dechorionated zebrafish embryos, Brachydanio rerio. Cryobiology. 1997c;34:251–63.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hagedorn M, Kleinhans FW, Artemov D, Pilatus U. Characterization of a major permeability barrier in the zebrafish embryo. Biol Reprod. 1998;59:1240–50.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hagedorn M, Peterson A, Mazur P, Kleinhans FW. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Cryobiology. 2004;49:181–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Harding G, Griffiths RA, Pavajeau L. Developments in amphibian captive breeding and reintroduction programs. Conserv Biol. 2016;30:340–9.

    CrossRef  PubMed  Google Scholar 

  • Harvey B. Cooling of embryonic cells, isolated blastoderms, and intact embryos of the zebra fish Brachydanio rerio to -196°C. Cryobiology. 1983;20:440–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • He X, Park EY, Fowler A, Yarmush ML, Toner M. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology. 2008;56:223–32.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecnar SJ, M’Closkey RT. Changes in the composition of a ranid frog community following bullfrog extinction. Am Midl Nat. 1997;137:145–50.

    CrossRef  Google Scholar 

  • Higaki S, Eto Y, Kawakami Y, Yamaha E, Kagawa N, Kuwayama M, et al. Production of fertile zebrafish (Danio rerio) possessing germ cells (gametes) originated from primordial germ cells recovered from vitrified embryos. Reproduction. 2010;139:733–40.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hill JE, Kilgore KH, Pouder DB, Powell JF, Watson CA, Yanong RP. Survey of ovaprim use as a spawning aid in ornamental fishes in the United States as administered through the University of Florida Tropical Aquaculture Laboratory. N Am J Aquac. 2009;71:206–9.

    CrossRef  Google Scholar 

  • Hoelker M, Schmoll F, Schneider H, Rings F, Gilles M, Tesfaye D, Jennen D, Tholen E, Griese J, Schellander K. Bovine blastocyst diameter as a morphological tool to predict embryo cell counts, embryo sex, hatching ability and developmental characteristics after transfer to recipients. Reprod Fertil Dev. 2006;18:551–7.

    CrossRef  PubMed  Google Scholar 

  • Hollinger T, Corton G. Artificial fertilization of gametes from the South African clawed frog, Xenopus laevis. Gamete Res. 1980;3:45–7.

    CrossRef  CAS  Google Scholar 

  • Hong N, Chen S, Ge R, Song J, Yi M, Hong Y. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation. Stem Cells Dev. 2012;21:2333–41.

    CrossRef  PubMed  Google Scholar 

  • Hopkins BK, Herr C. 78 Cryopreservation of frog (Rana pipiens) sperm cells collected by non-lethal methods. Reprod Fertil Dev. 2007;20:120.

    CrossRef  Google Scholar 

  • Horseman ND, Smith CA, Culley DD Jr. Effects of age and photoperiod on ovary size and condition in bullfrogs (Rana catesbeiana, Shaw) (Amphibia, Anura, Ranidae). J Herpetol. 1978;12:287–90.

    CrossRef  Google Scholar 

  • Howard JG, Marinari PE, Wildt DE. Black-footed ferret: model for assisted reproductive technologies contributing to in situ conservation. In: Holt WV, Pickard AR, Rodger JC, Wildt DE, editors. Reproductive science and integrated conservation. Cambridge: University Press; 2003. p. 249–66.

    Google Scholar 

  • Howard JG, Lynch C, Santymire RM, Marinari PE, Wildt DE. Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Anim Conserv. 2016;19:102–11.

    CrossRef  Google Scholar 

  • Hwang I-S, Hochi S. Recent progress in cryopreservation of bovine oocytes. Biomed Res Int. 2014;2014:570647.

    PubMed  PubMed Central  Google Scholar 

  • Inoda T, Morisawa M. Effect of osmolality on the initiation of sperm motility in Xenopus laevis. Comp Biochem Physiol A Physiol. 1987;88(3):539–42.

    CrossRef  CAS  Google Scholar 

  • Isayeva A, Zhang T, Rawson DM. Studies on chilling sensitivity of zebrafish (Danio rerio) oocytes. Cryobiology. 2004;49:114–22.

    CrossRef  PubMed  Google Scholar 

  • Ishibashi S, Kroll KL, Amaya E. Generation of transgenic Xenopus laevis: II. Sperm nuclei preparation. CSH Protoc. 2007a;2007:pdb.prot4839.

    PubMed  Google Scholar 

  • Ishibashi S, Kroll KL, Amaya E. Generation of transgenic Xenopus laevis: III. Sperm nuclear transplantation. Cold Spring Harb Protoc. 2007b;2007:pdb.prot4840.

    Google Scholar 

  • Jin B, Kleinhans FW, Mazur P. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology. 2014;68:419–30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaurova S, Chekurova N, Melnikova E, Uteshev V, Gakhova E. Cryopreservation of frog Rana temporaria sperm without loss of fertilizing capacity. In: Paper presented at genetic resource conservation proc of XIV working meeting, Pushchino, 13–15 May 1996; 1996.

    Google Scholar 

  • Kaurova S, Uteshev V, Chekurova N, Gakhova E. Cryopreservation of testis of frog Rana temporaria. Infusionsther Transfusionsmed. 1997;24:78–9.

    Google Scholar 

  • Keogh LM, Byrne PG, Silla AJ. The effect of gentamicin on sperm motility and bacterial abundance during chilled sperm storage in the Booroolong frog. Gen Comp Endocrinol. 2017;243:51–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Khalili MA, A Nottola S, Shahedi A, Macchiarelli G. Contribution of human oocyte architecture to success of in vitro maturation technology. Iranian J Reprod Med. 2013;11:1–10.

    CAS  Google Scholar 

  • Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano. 2017;11:7869–78.

    CrossRef  CAS  PubMed  Google Scholar 

  • Khosla K, Zhan L, Bhati A, Carley-Clopton A, Hagedorn M, Bischof J. Characterization of laser gold nanowarming: a platform for millimeter-scale cryopreservation. Langmuir. 2018a; https://doi.org/10.1021/acs.langmuir.8b03011.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Khosla K, Zhan L, Bhati A, Carley-Clopton A, Hagedorn M, Bischof J. Physical limits of laser gold nanowarming. Cryobiology. 2018b;85:161.

    CrossRef  Google Scholar 

  • Kiesecker JM, Blaustein AR, Miller CL. Transfer of a pathogen from fish to amphibians. Conserv Biol. 2001;15:1064–70.

    CrossRef  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kleinhans FW, Guenther JF, Seki S, Edashige K, Roberts DM, Mazur P. Water Pf of Xenopus (AQP +/-) Stage I and II oocytes. Cryobiology. 2005;51:389.

    Google Scholar 

  • Kleinhans FW, Guenther JF, Roberts DM, Mazur P. Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry. Cryobiology. 2006;52:128–38.

    CrossRef  CAS  PubMed  Google Scholar 

  • Klop-Toker KL, Valdez JW, Stockwell MP, Edgar ME, Fardell L, Clulow S, Clulow J, Mahony MJ. Assessing host response to disease treatment: how chytrid-susceptible frogs react to increased water salinity. Wildl Res. 2018;44:648–59.

    CrossRef  Google Scholar 

  • Knapp RA, Matthews KR. Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conserv Biol. 2000;14:1–12.

    CrossRef  Google Scholar 

  • Knapp RA, Boiano DM, Vredenburg VT. Removal of nonnative fish results in population expansion of a declining amphibian (mountain yellow-legged frog, Rana muscosa). Biol Conserv. 2007;135(1):11–20.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Köseoglu M, Eroglu A, Toner M, Sadler KC. Starfish oocytes form intracellular ice at unusually high temperatures. Cryobiology. 2001;43:248–59.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kouba AJ, Vance CK. Applied reproductive technologies and genetic resource banking for amphibian conservation. Reprod Fertil Dev. 2009;21:719–37.

    CrossRef  PubMed  Google Scholar 

  • Kouba AJ, Vance CK, Frommeyer MA, Roth TL. Structural and functional aspects of Bufo americanus spermatozoa: effects of inactivation and reactivation. J Exp Zool. 2003;295A:172–82.

    CrossRef  Google Scholar 

  • Kouba AJ, Vance CK, Willis EL. Artificial fertilization for amphibian conservation: current knowledge and future considerations. Theriogenology. 2009;71:214–27.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kouba A, Willis E, Vance C, Hasenstab S, Reichling S, Krebs J, Linhoff L, Snoza M, Langhorne C, Germano J. 116 development of assisted reproduction technologies for the endangered Mississippi gopher frog (Rana sevosa) and sperm transfer for in vitro fertilization. Reprod Fertil Dev. 2011;24:170.

    CrossRef  Google Scholar 

  • Kouba AJ, Lloyd RE, Houck ML, Silla AJ, Calatayud N, Trudeau VL, et al. Emerging trends for biobanking amphibian genetic resources: the hope, reality and challenges for the next decade. Biol Conserv. 2013;164:10–21.

    CrossRef  Google Scholar 

  • Kusuda S, Teranishi T, Koide N. Cryopreservation of chum salmon blastomeres by the straw method. Cryobiology. 2002;45:60–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kusuda S, Teranishi T, Koide N, Nagai T, Arai K, Yamaha E. Pluripotency of cryopreserved blastomeres of the goldfish. J Exp Zool A Comp Exp Biol. 2004;301(2):131–8.

    CrossRef  PubMed  Google Scholar 

  • Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005;11:300–8.

    CrossRef  PubMed  Google Scholar 

  • Lambert MR, et al. Molecular evidence for sex reversal in wild populations of green frogs (Rana clamitans). PeerJ. 2019;7:e6449. https://doi.org/10.7717/peerj.6449.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Langhorne CJ, Calatayud NE, Kouba AJ, Feugang JM, Vance CK, Willard ST. 026 Cryoconservation: successful sperm cryopreservation and develop-mental outcomes using endangered North American amphibians. Cryobiology. 2013;67(3):405.

    CrossRef  Google Scholar 

  • Lawler SP, Dritz D, Strange T, Holyoak M. Effects of introduced mosquitofish and bullfrogs on the threatened California red-legged frog. Conserv Biol. 1999;13:613–22.

    CrossRef  Google Scholar 

  • Lawson B, Clulow S, Mahony MJ, Clulow J. Towards gene banking amphibian maternal germ lines: short-term incubation, cryoprotectant tolerance and cryopreservation of embryonic cells of the frog, Limnodynastes peronii. PLoS One. 2013;8(4):e60760.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibo S, Loskutoff N. Cryobiology of in vitro-derived bovine embryos. Theriogenology. 1993;39:81–94.

    CrossRef  Google Scholar 

  • Licht P, Tsai P-S, Sotowska-Brochocka J. The nature and distribution of gonadotropin-releasing hormones in brains and plasma of ranid frogs. Gen Comp Endocrinol. 1994;94:186–98.

    CrossRef  CAS  PubMed  Google Scholar 

  • Liebermann J, Tucker MJ. Vitrifying and warming of human blastocysts using the Cryotop. In: Vitrification in assisted reproduction. London: CRC Press; 2007. p. 258–64.

    Google Scholar 

  • Lin S, Long W, Chen J, Hopkins N. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc Natl Acad Sci U S A. 1992;89:4519–23.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Zhang T, Rawson DM. Cryopreservation of zebrafish (Danio rerio) blastomeres by controlled slow cooling. CryoLetters. 2009;30:132–41.

    CAS  PubMed  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci U S A. 2006;103:3165–70.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X-H, Zhang T, Rawson DM. The effect of partial removal of yolk on the chilling sensitivity of zebrafish (Danio rerio) embryos. Cryobiology. 1999;39:236–42.

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu X-H, Zhang T, Rawson DM. Differential scanning calorimetry studies of intramembrane freezing and cryoprotectant penetration in zebrafish (Danio rerio) embryos. J Exp Zool. 2001;290:299–310.

    CrossRef  CAS  PubMed  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia. 1999;91:219–27.

    CrossRef  Google Scholar 

  • Lujić J, Franěk R, Marinović Z, Kašpar V, Pšenička M, Urbányi B, Horváth Á. Cryopreservation of common carp (Cyprinus carpio) spermatogonial stem cells. Cryobiology. 2018;85:158.

    CrossRef  Google Scholar 

  • Luo T, Xu Y, Hoffman TL, Zhang T, Schilling T, Sargent TD. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development. Development. 2007;134(7):1279–89.

    CrossRef  CAS  PubMed  Google Scholar 

  • Luyet BJ, Hodapp EL. Revival of frog’s spermatozoa vitrified in liquid air. Proc Soc Exp Biol Med. 1938;39:433–4.

    CrossRef  Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H. Conservation biology: restoration of an inbred adder population. Nature. 1999;402:34–5.

    CrossRef  CAS  Google Scholar 

  • Mansour N, Lahnsteiner F, Patzner RA. Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology. 2009;72:1221–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mansour N, Lahnsteiner F, Patzner RA. Motility and cryopreservation of spermatozoa of European common frog, Rana temporaria. Theriogenology. 2010;74:724–32.

    CrossRef  CAS  PubMed  Google Scholar 

  • Marcec R, Langhorne C, Vance C, Kouba A, Willard S. C-1013: cryopreservation of spermic milt in the model species Ambystoma tigrinum (Tiger salamander) for application in endangered salamanders. Cryobiology. 2014;69:515.

    CrossRef  Google Scholar 

  • Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, Horváth Á, Yoshizaki G. Testis cryopreservation and spermatogonia transplantation as a tool for zebrafish line reconstitution. Cryobiology. 2018a;85:145–6.

    CrossRef  Google Scholar 

  • Marinović Z, Lujić J, Kása E, Csenki Z, Urbányi B, Horváth Á. Cryopreservation of zebrafish spermatogonia by whole testes needle immersed ultra-rapid cooling. J Vis Exp. 2018b;133:e56118.

    Google Scholar 

  • Masui Y. Relative roles of the pituitary, follicle cells, and progesterone in the induction of oocyte maturation in Rana pipiens. J Exp Zool. 1967;166:365–75.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mazur P. Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Rotan: CRC Press; 2004. p. 3–65.

    CrossRef  Google Scholar 

  • Mazur P, Kleinhans FW. Relationship between intracellular ice formation in oocytes of the mouse and Xenopus and the physical state of the external medium—a revisit. Cryobiology. 2008;56:22–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mazur P, Seki S. Survival of mouse oocytes after being cooled in a vitrification solution to −196 °C at 95 to 70,000 °C/min and warmed at 610 to 118,000 °C/min: a new paradigm for cryopreservation by vitrification. Cryobiology. 2011;62:1–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mazur P, Seki S, Pinn IL, Kleinhans FW, Edashige K. Extra- and intracellular ice formation in mouse oocytes. Cryobiology. 2005;51:29–53.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mazzoni R, Cunningham AA, Daszak P, Apolo A, Perdomo E, et al. Emerging pathogen of wild amphibians in frogs (Rana catesbeiana) farmed for international trade. Emerg Infect Dis. 2003;9:3–30.

    CrossRef  Google Scholar 

  • McKinnell RG. Cloning: nuclear transplantation in amphibia. Minneapolis: University of Minnesota Press; 1978.

    Google Scholar 

  • McKinnell RG, Picciaano DJ, Kreig RE. Fertilization and development of frog eggs after repeated spermiation induced by human chorionic gonadotrophin. Lab Anim Sci. 1976;26:932–5.

    CAS  PubMed  Google Scholar 

  • Menzies J. The frogs of New Guinea and the Solomon Islands. Sofia: Pensoft; 2006.

    Google Scholar 

  • Messaoud NB, Yue J, Valent D, Katzarova I, López JM. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and smac/diablo. PLoS One. 2015;10:e0124482.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Michael SF, Jones C. Cryopreservation of spermatozoa of the terrestrial Puerto Rican frog, Eleutherodactylus coqui. Cryobiology. 2004;48:90–4.

    CrossRef  CAS  PubMed  Google Scholar 

  • Michael S, Buckley C, Toro E, Estrada A, Vincent S. Induced ovulation and egg deposition in the direct developing anuran Eleutherodactylus coqui. Reprod Biol Endocrinol. 2004;2:6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mollard R. Culture, cryobanking and passaging of karyotypically validated native Australian amphibian cells. Cryobiology. 2018;81:201–5.

    CrossRef  PubMed  Google Scholar 

  • Monfort SL. “Mayday Mayday Mayday”, the Millenium Ark is sinking! In: Holt WV, et al., editors. Reproductive sciences in animal conservation, Advances in experimental medicine and biology 753. New York: Springer; 2014. p. 15–31. https://doi.org/10.1007/978-1-4939-0820-2_2.

    CrossRef  Google Scholar 

  • Moore FL. Reproductive endocrinology of amphibians. In: Chester-Jones L, Ingleton PM, Phillips JG, editors. Fundamentals of comparative vertebrate endocrinology. New York: Springer; 1987. p. 207–21.

    CrossRef  Google Scholar 

  • Morrow SG. The effects of DNA damage caused by sperm cryopreservation in Xenopus. University of Portsmouth; 2015.

    Google Scholar 

  • Morrow S, Gosálvez J, López-Fernández C, Arroyo F, Holt WV, Guille MJ. Effects of freezing and activation on membrane quality and DNA damage in Xenopus tropicalis and Xenopus laevis spermatozoa. Reprod Fertil Dev. 2017;29:1556–66.

    Google Scholar 

  • Moyle PB. Effects of introduced bullfrogs (Rana catesbeiana), on the native frogs of the San Joaquin Valley, California. Copeia. 1973;1:18–22.

    CrossRef  Google Scholar 

  • Mugnano JA, Costanzo JP, Beesley SG, Lee RE. Evaluation of glycerol and dimethyl sulfoxide for the cryopreservation of spermatozoa from the wood frog (Rana sylvatica). CryoLetters. 1998;19:249–54.

    CAS  Google Scholar 

  • Murray K, Retallick R, McDonald KR, Mendez D, Aplin K, Kirkpatrick P, et al. The distribution and host range of the pandemic disease chytridiomycosis in Australia spanning surveys from 1956 to 2007. Ecology. 2010;91:1557.

    CrossRef  Google Scholar 

  • Nakamura M. Sex determination in amphibians. Semin Cell Dev Biol. 2009;20(3):271–82. https://doi.org/10.1016/j.semcdb.2008.10.003.

    CrossRef  PubMed  Google Scholar 

  • Nakano M, Hasunuma I, Okada R, Yamamoto K, Kikuyama S, Machida T, Kobayashi T. Molecular cloning of bullfrog D2 dopamine receptor cDNA: tissue distribution of three isoforms of D2 dopamine receptor mRNA. Gen Comp Endocrinol. 2010a;168:143–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nakano M, Minagawa A, Hasunuma I, Okada R, Tonon M-C, Vaudry H, Yamamoto K, Kikuyama S, Machida T, Kobayashi T. D2 Dopamine receptor subtype mediates the inhibitory effect of dopamine on TRH-induced prolactin release from the bullfrog pituitary. Gen Comp Endocrinol. 2010b;168:287–92.

    CrossRef  CAS  PubMed  Google Scholar 

  • Narayan E, Hero J-M. Urinary corticosterone responses and haematological stress indicators in the endangered Fijian ground frog (Platymantis vitiana) during transportation and captivity. Aust J Zool. 2011;59:79–85.

    CrossRef  Google Scholar 

  • Narayan EJ, Cockrem JF, Hero J-M. Urinary corticosterone metabolite responses to capture and captivity in the cane toad (Rhinella marina). Gen Comp Endocrinol. 2011;173:371–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nilsson EE, Cloud JG. Rainbow trout chimeras produced by injection of blastomeres into recipient blastulae. Proc Natl Acad Sci U S A. 1992;89:9425–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson EE, Cloud JG. Cryopreservation of rainbow trout (Oncorhynchus mykiss) blastomeres. Aquat Living Resour. 1993;6:77–80.

    CrossRef  Google Scholar 

  • O’Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA, Murray KA, Brankovics B, Fumagalli M. Recent Asian origin of chytrid fungi causing global amphibian declines. Science. 2018;360:621–7.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien ED, Salicioni AM, Cabada MO, Arranz SE. Vitellogenesis in Bufo arenarum: identification, characterization and immunolocalization of high molecular mass lipovitellin during oogenesis. Comp Biochem Physiol B Biochem Mol Biol. 2010;155:256–65.

    CrossRef  PubMed  CAS  Google Scholar 

  • Otoi T, Yamamoto K, Koyama N, Tachikawa S, Suzuki T. Bovine oocyte diameter in relation to developmental competence. Theriogenology. 1997;48:769–74.

    CrossRef  CAS  PubMed  Google Scholar 

  • Parsons JE, Thorgaard GH. Production of androgenetic diploid rainbow trout. J Hered. 1984;76:177–81.

    CrossRef  Google Scholar 

  • Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology. 2017;92:149–55.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Peng L-Y, Xiao Y-M, Liu Y. Effect of cryopreservation and short-term storage of Chinese giant salamander sperm. Acta Hydrobiol Sinica. 2011;35:325–31.

    CrossRef  Google Scholar 

  • Peter RE, Lin H-R, Van Der Kraak G. Induced ovulation and spawning of cultured freshwater fish in China: advances in application of GnRH analogues and dopamine antagonists. Aquaculture. 1988;74:1–10.

    CrossRef  CAS  Google Scholar 

  • Peyridieu J, Baudot A, Boutron P, Mazuer J, Odin J, Ray A, Chapelier E, Payen E, Descotes J. Critical cooling and warming rates to avoid ice crystallization in small pieces of mammalian organs permeated with cryoprotective agents. Cryobiology. 1996;33:436–46.

    CrossRef  CAS  PubMed  Google Scholar 

  • Popesku JT, Martyniuk CJ, Mennigen J, Xiong H, Zhang D, Xia X, Cossins AR, Trudeau VL. The goldfish (Carassius auratus) as a model for neuroendocrine signaling. Mol Cell Endocrinol. 2008;293:43–56.

    CrossRef  CAS  PubMed  Google Scholar 

  • Porter KR. Androgenetic development of the egg of Rana pipiens. Biol Bull. 1939;77:233–57.

    CrossRef  Google Scholar 

  • Pounds JA, Crump ML. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv Biol. 1994;8:72–85.

    CrossRef  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH. Biological response to climate change on a tropical mountain. Nature. 1999;398:611–5.

    CrossRef  CAS  Google Scholar 

  • Proaño B, Pérez OD. In vitro fertilizations with cryopreserved sperm of Rhinella marina (Anura: Bufonidae) in Ecuador. Amphibian Reptile Conserv. 2017;11:1–6.

    Google Scholar 

  • Rall W, Fahy G. Vitrification: a new approach to embryo cryopreservation. Theriogenology. 1985a;23:220.

    CrossRef  Google Scholar 

  • Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature. 1985b;313:573.

    CrossRef  CAS  PubMed  Google Scholar 

  • Rasar MA, Hammes SR. The physiology of the Xenopus laevis ovary. In: Liu XJ, editor. Xenopus protocols: cell biology and signal transduction. Totowa: Humana Press; 2006. p. 17–30.

    CrossRef  Google Scholar 

  • Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod. 2012;27:i2–i21.

    CrossRef  PubMed  Google Scholar 

  • Roth TL, Szymanski DC, Keyster ED. Effects of age, weight, hormones, and hibernation on breeding success in boreal toads (Bufo boreas boreas). Theriogenology. 2010;73:501–11.

    CrossRef  CAS  PubMed  Google Scholar 

  • Routray P, Dash C, Dash SN, Tripathy S, Verma DK, Swain SK, et al. Cryopreservation of isolated blastomeres and embryonic stem-like cells of Leopard danio, Brachydanio frankei. Aquacult Res. 2010;41:579–89.

    CrossRef  Google Scholar 

  • Rugh R. Experimental embryology techniques and procedures. Minneapolis: Burgess Publishing; 1962.

    CrossRef  Google Scholar 

  • Ryder OA, Onuma M. Viable cell culture banking for biodiversity characterization and conservation. Annu Rev Anim Biosci. 2018;6:83–98.

    CrossRef  PubMed  Google Scholar 

  • Salgado Costa C, Trudeau VL, Ronco AE, Natale GS. Exploring antipredator mechanisms: new findings in ceratophryid tadpoles. J Herpetol. 2016;50:233–8.

    CrossRef  Google Scholar 

  • Santymire R, Livieri T, Branvold-Faber H, Marinari P. The black-footed ferret: on the brink of recovery? In: Holt WV, Brown JL, Comizzoli P, editors. Reproductive sciences in animal conservation, vol. 753. New York: Springer; 2014. p. 119–34.

    Google Scholar 

  • Sargent MG, Mohun TJ. Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis. 2005;41:41–6.

    CrossRef  PubMed  Google Scholar 

  • Sarre SD, Ezaz T, Georges A. Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genomics Hum Genet. 2011;12(1):391–406. https://doi.org/10.1146/annurev-genom-082410-101518.

    CrossRef  CAS  PubMed  Google Scholar 

  • Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE, McFadden MS, Marantelli G, Skerratt LF, Driscoll DA. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv Biol. 2014;28:1195–205.

    CrossRef  PubMed  Google Scholar 

  • Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363:1459–63.

    CrossRef  CAS  PubMed  Google Scholar 

  • Seong JY, Wang L, Oh DY, Yun O, Maiti K, Li JH, Soh JM, Choi HS, Kim K, Vaudry H. Ala/Thr201 in extracellular loop 2 and Leu/Phe290 in transmembrane domain 6 of type 1 frog gonadotropin-releasing hormone receptor confer differential ligand sensitivity and signal transduction. Endocrinology. 2003;144:454–66.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sherman CD, Wapstra E, Uller T, Olsson M. Male and female effects on fertilization success and offspring viability in the Peron’s tree frog, Litoria peronii. Austral Ecol. 2008;33:348–52.

    CrossRef  Google Scholar 

  • Shishova NR, Uteshev VK, Kaurova SA, Browne RK, Gakhova EN. Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model research species. Theriogenology. 2011;75(2):220–32.

    CrossRef  CAS  PubMed  Google Scholar 

  • Silla A. Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Gunther’s toadlet, Pseudophryne guentheri. Reprod Biol Endocrinol. 2011;9:68.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Silla AJ. Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentherii): effect of medium osmolality, sperm concentration and gamete storage. Reprod Fertil Dev. 2012; https://doi.org/10.1071/RD12223.

  • Silla AJ. Artificial fertilisation in a terrestrial toadlet (Pseudophryne guentheri): effect of medium osmolality, sperm concentration and gamete storage. Reprod Fertil Dev. 2013;25:1134–41.

    CrossRef  PubMed  Google Scholar 

  • Silla AJ, Byrne PG. The role of reproductive technologies in amphibian conservation breeding programs. Annu Rev Anim Biosci. 2019;7:499–519.

    CrossRef  PubMed  Google Scholar 

  • Silla AJ, McFadden MS, Byrne PG. Hormone-induced sperm-release in the critically endangered Booroolong frog (Litoria booroolongensis): effects of gonadotropin-releasing hormone and human chorionic gonadotropin. Conserv Physiol. 2019;7:coy080.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth. 2007;4:125–34.

    CrossRef  Google Scholar 

  • Skerratt LF, McDonald KR, Hines HB, Berger L, Mendez D, Phillott AD, et al. Application of the survey protocol for chytridiomycosis to Queensland, Australia. Dis Aquat Organ. 2010;92:117–29.

    CrossRef  PubMed  Google Scholar 

  • Skinner DC, Robinson JE. Luteinising hormone secretion from the perifused ovine pars tuberalis and pars distalis: effects of gonadotropin-releasing hormone and melatonin. Neuroendocrinology. 1997;66:263–70.

    CrossRef  CAS  PubMed  Google Scholar 

  • Smith LD, Ecker RE, Subtelny S. In vitro induction of physiological maturation in Rana pipiens oocytes removed from their ovarian follicles. Dev Biol. 1968;17:627–43.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sotowska-Brochocka J. The stimulatory and inhibitory role of the hypothalamus in the regulation of ovulation in grass frog, Rana temporaria. Gen Comp Endocrinol. 1988;70:83–90.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sotowska-Brochocka J, Licht P. Effect of infundibular lesions on GnRH and LH release in the frog, Rana temporaria, during hibernation. Gen Comp Endocrinol. 1992;85:43–54.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sotowska-Brochocka J, Martyńska L, Licht P. Dopaminergic inhibition of gonadotropic release in hibernating frogs, Rana temporaria. Gen Comp Endocrinol. 1994;93:192–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, et al. Status and trends of amphibian declines and extinctions worldwide. Science. 2004;306:1783–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE. Threatened amphibians of the world. Barcelona, Gland, and Arlington: Lynx Edicions, IUCN, and Conservation International; 2008.

    Google Scholar 

  • Thorgaard G, Wheeler P, Fields R. Utilization of androgenesis for strain recovery from cryopreserved sperm. In: Tiersch TR, Green CC, editors. Cryopreservation in aquatic species. 2nd ed. Sorrento: World Aquaculture Society; 2005. p. 732–7.

    Google Scholar 

  • Toro E, Michael SF. In vitro fertilization and artificial activation of eggs of the direct-developing anuran Eleutherodactylus coqui. Reprod Biol Endocrinol. 2004;2:60.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Trudeau VL. Neuroendocrine regulation of gonadotrophin II release and gonadal growth in the goldfish, Carassius auratus. Rev Reprod. 1997;2:55–68.

    CrossRef  CAS  PubMed  Google Scholar 

  • Trudeau VL, Somoza GM, Natale GS, Pauli B, Wignall J, Jackman P, Doe K, Schueler FW. Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist. Reprod Biol Endocrinol. 2010;8:36.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Trudeau VL, Schueler FW, Navarro-Martin L, Hamilton CK, Bulaeva E, Bennett A, Fletcher W, Taylor L. Efficient induction of spawning of Northern leopard frogs (Lithobates pipiens) during and outside the natural breeding season. Reprod Biol Endocrinol. 2013;11:14.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Turani B, Aliko V, Jona D. In vitro fertilization and maturation of Balkan water frog (Pelophylax kurtmuelleri, Gayda, 1940)—a case study in reproductive amphibian biotechnology. Int J Ecosyst Ecol Sci. 2015;5:557–60.

    Google Scholar 

  • Unger S, Mathis A, Wilkinson R. A comparison of sperm health in declining and stable populations of Hellbenders (Cryptobranchus alleganiensis alleganiensis and C.a. bishopi). Am Midl Nat. 2013;170:382–92.

    CrossRef  Google Scholar 

  • Upton R, Clulow S, Mahony M, Clulow J. Generation of a sexually mature individual of the amphibian Litoria fallax from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development. Conserv Physiol. 2018a;6(1):coy043. https://doi.org/10.1093/conphys/coy043.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Upton R, Clulow S, Seeto R, Wong L, Mahony M, Clulow J. Successful sperm cryopreservation and generated offspring of the endangered frog, Litoria aurea. Cryobiology. 2018b;85:148–9.

    CrossRef  Google Scholar 

  • Uteshev V, Gakhova E. Gene cryobanks for conservation of endangered amphibian species. Russ J Herpetol. 2005;12(Suppl):233–4.

    Google Scholar 

  • Uteshev VK, Melnikova EV, Kaurova SA, Nikitin VA, Gakhova EN, Karnaukhov VN. Fluorescent analysis of cryopreserved totipotent cells of amphibian embryos. Biofizika. 2002;47:539–45.

    CAS  PubMed  Google Scholar 

  • Uteshev VK, Shishova N, Kaurova SA, Manohkin AA, Gakhova EN. Collection and cryopreservation of hormonally induced sperm of pool frog (Pelophylax lessonae). Russ J Herpetol. 2013;20(2):105–9.

    Google Scholar 

  • Uteshev VK, Gakhova EN, Kramarova LI, Shishova NV, Kaurova SA, Browne RK. Refrigerated storage of European common frog Rana temporaria oocytes. Cryobiology. 2018;83:56–9.

    CrossRef  PubMed  Google Scholar 

  • Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H. Open pulled straw (ops) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev. 1998;51:53–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Vance CK, Julien A, Counsell K, Marcec R, Agcanas L, Tucker A, Kouba A. Amphibian art over the generations: frozen sperm offspring produce viable F2 generation. Cryobiology. 2018;85:178.

    CrossRef  Google Scholar 

  • Vanecek J. Inhibitory effect of melatonin on GnRH-induced LH release. Rev Reprod. 1999;4:67–72.

    CrossRef  CAS  PubMed  Google Scholar 

  • Vitt LJ, Caldwell JP. Herpetology: an introductory biology of amphibians and reptiles. San Diego: Academic Press; 2013.

    Google Scholar 

  • Vu M, Trudeau VL. Neuroendocrine control of spawning in amphibians and its practical applications. Gen Comp Endocrinol. 2016;234:28–39.

    CrossRef  CAS  PubMed  Google Scholar 

  • Vu M, Weiler B, Trudeau VL. Time-and dose-related effects of a gonadotropin-releasing hormone agonist and dopamine antagonist on reproduction in the northern leopard frog (lithobates pipiens). Gen Comp Endocrinol. 2017;254:86–96.

    CrossRef  CAS  PubMed  Google Scholar 

  • Waggener WL, Carroll EJ. A method for hormonal induction of sperm release in anurans (eight species) and in vitro fertilization in Lepidobatrachus species. Dev Growth Differ. 1998;40:19–25.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wake DB. Climate change implicated in amphibian and lizard declines. PNAS. 2007;104:8201–2.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc R Soc Lond Ser B Biol Sci. 2008;105:11466–73.

    CAS  Google Scholar 

  • Wallace RA. Studies on amphibian yolk III. A resolution of yolk platelet components. Biochim Biophys Acta. 1963;74:494–504.

    Google Scholar 

  • Wallace RA. Vitellogenesis and oocyte growth in nonmammalian vertebrates. In: Browder LW, editor. Oogenesis. Boston: Springer; 1985. p. 127–77.

    CrossRef  Google Scholar 

  • Wang L, Bogerd J, Choi HS, Seong JY, Soh JM, Chun SY, Blomenröhr M, Troskie BE, Millar RP, Wen HY. Three distinct types of GnRH receptor characterized in the bullfrog. Proc Natl Acad Sci. 2001;98:361–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wilczynski W, Lynch KS. Female sexual arousal in amphibians. Horm Behav. 2011;59:630–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Williams SE, Hoffman EA. Minimizing genetic adaptation in captive breeding programs: a review. Biol Conserv. 2009;142(11):2388–400.

    CrossRef  Google Scholar 

  • Wolf DP, Hedrick JL. A molecular approach to fertilization: II. Viability and artificial fertilization of Xenopus laevis gametes. Dev Biol. 1971;25(3):348–59.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM. Vitrification enhancement by synthetic ice blocking agents. Cryobiology. 2000;40:228–36.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wright P. Induction of ovulation in vitro in Rana pipiens with steroids. Gen Comp Endocrinol. 1961;1:20–3.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yamaha E, Mizuno T, Hasebe Y, Yamazaki F. Chimeric fish produced by exchanging upper parts of blastoderms in goldfish blastulae. Fish Sci. 1997;63:514–9.

    CrossRef  CAS  Google Scholar 

  • Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. Int Rev Cytol. 2003;225:131–85.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yasui GS, Fujimoto T, Sakao S, Yamaha E, Arai K. Production of loach (Misgurnus anguillicaudatus) germ-line chimera using transplantation of primordial germ cells isolated from cryopreserved blastomeres. J Anim Sci. 2011;89:2380–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang T, Rawson DM. Feasibility studies on vitrification of intact zebrafish (Brachydanio rerio) embryos. Cryobiology. 1996;33:1–13.

    CrossRef  Google Scholar 

  • Zhang RB, Werkman AS. Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am J Physiol Cell Physiol. 1991;260:C26–34.

    CrossRef  CAS  Google Scholar 

  • Zhang T, Isayeva A, Adams SL, Rawson DM. Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology. 2005;50:285–93.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zimkus B, Hassapakis C, Houck M. Integrating current methods for the preservation of amphibian genetic resources and viable tissues to achieve best practices for species conservation. Amphibian Reptile Conserv. 2018;12:1–27.

    Google Scholar 

  • Zuccotti M, Piccinelli A, Marziliano N, Mascheretti S, Redi CA. Development and loss of the ability of mouse oolemma to fuse with spermatozoa. Zygote (Cambridge, England). 1994;2:333–9.

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Australian Research Council, the University of Newcastle and WWF (JC); Australian Government Post-Graduate Awards (RU); University of Ottawa Research Chair Program, Natural Sciences and Engineering Research Council of Canada (VLT); Macquarie University Research Fellowship (SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Clulow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Clulow, J., Upton, R., Trudeau, V.L., Clulow, S. (2019). Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. In: Comizzoli, P., Brown, J., Holt, W. (eds) Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-030-23633-5_14

Download citation