Advertisement

Statistical Measures

  • Paweł D. DomańskiEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 245)

Abstract

Statistical measures constitute the second major group of the CPA indexes. Control engineer is especially interested in two aspects that might be measured with statistics. It is the variable average value and its variability. Statistical analysis often starts with the evaluation of simple statistics like maximum, minimum, mean, median or standard deviation. On the other hand, the variable histogram gives graphical representation of the of its statical properties. The chapters describes the indexes derived from the normal Gaussian distribution. Nonetheless much attention is put to the non-Gaussian approaches. The rationale for that part comes from the analysis of the real industrial data as they are rarely of normal properties. Fat-tailed stable probabilistic density functions are discussed in details as they deliver good and robust scale factors. The chapter finishes with the short presentation of the robust statistics data are very useful in the CPA task.

References

  1. 1.
    Ailliot, P., Thompson, C., Thomson, P.: Mixed methods for fitting the GEV distribution. Water Resour. Res. 47(5), w05551 (2011)CrossRefGoogle Scholar
  2. 2.
    Anderson, T.W., Darling, D.A.: A test of goodness-of-fit. J. Am. Stat. Assoc. 49, 765–769 (1954)CrossRefGoogle Scholar
  3. 3.
    Axensten, P.: Cauchy CDF, PDF, inverse CDF, parameter fit and random generator. http://www.mathworks.com/matlabcentral/fileexchange/11749-cauchy/ (2006)
  4. 4.
    Borak, S., Misiorek, A., Weron, R.: Models for heavy-tailed asset returns. In: Cizek, P., Härdle, K.W., Weron, R. (eds.) Statistical Tools for Finance and Insurance, 2nd edn, pp. 21–56. Springer, Berlin (2011)CrossRefGoogle Scholar
  5. 5.
    Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F.: Diagnosis of poor control-loop performance using higher-order statistics. Automatica 40(10), 1719–1728 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cramer, H.: On the composition of elementary errors. Scand. Actuar. J. 1, 13–74 (1928)CrossRefGoogle Scholar
  7. 7.
    Croux, C., Dehon, C.: Robust estimation of location and scale. Wiley StatsRef: Statistics Reference Online (2014)Google Scholar
  8. 8.
    Daszykowski, M., Kaczmarek, K., Heyden, Y.V., Walczak, B.: Robust statistics in data analysis–a review: basic concepts. Chemom. Intell. Lab. Syst. 85(2), 203–219 (2007)CrossRefGoogle Scholar
  9. 9.
    Domański, P.D.: Non-gaussian properties of the real industrial control error in SISO loops. In: Proceedings of the 19th International Conference on System Theory, Control and Computing, pp. 877–882 (2015)Google Scholar
  10. 10.
    Domański, P.D.: Non-Gaussian statistical measures of control performance. Control Cybern. 46(3), 259–290 (2017)zbMATHGoogle Scholar
  11. 11.
    Domański, P.D.: Statistical measures for proportional-integral-derivative control quality: simulations and industrial data. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 232(4), 428–441 (2018)CrossRefGoogle Scholar
  12. 12.
    Domański, P.D., Gintrowski, M.: Alternative approaches to the prediction of electricity prices. Int. J. Energy Sect. Manag. 11(1), 3–27 (2017)CrossRefGoogle Scholar
  13. 13.
    Domański, P.D., Ławryńczuk, M.: Assessment of the GPC control quality using non-Gaussian statistical measures. Int. J. Appl. Math. Comput. Sci. 27(2), 291–307 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Engle, R.: Risk and volatility: econometric models and financial practice. Am. Econ. Rev. 94(3), 405–420 (2004)CrossRefGoogle Scholar
  15. 15.
    Ferguson, T.S.: Maximum likelihood estimates of the parameters of the cauchy distribution for samples of size 3 and 4. J. Am. Stat. Assoc. 73(361), 211–213 (1978)CrossRefGoogle Scholar
  16. 16.
    Gremm, M.: The origin of fat tails. https://ssrn.com/abstract=2337830 (2013). SSRN
  17. 17.
    Hawkins, D.M.: Identification of Outliers. Chapman and Hall, London, New York (1980)CrossRefGoogle Scholar
  18. 18.
    Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley (2009)Google Scholar
  19. 19.
    Johnson, N., Kotz, S., Balakrishnan, N.: Continuous univariate distributions. No. t. 2 in Wiley series. In: Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley (1995)Google Scholar
  20. 20.
    Koutrouvelis, I.A.: Regression-type estimation of the parameters of stable laws. J. Am. Stat. Assoc. 75(372), 918–928 (1980)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kuruoglu, E.E.: Density parameter estimation of skewed alpha-stable distributions. IEEE Trans. Signal Process. 49(10), 2192–2201 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, L.: Bayes estimation of parameter of laplace distribution under a new LINEX-based loss function. Int. J. Data Sci. Anal. 3(6), 85–89 (2017)CrossRefGoogle Scholar
  23. 23.
    Lilliefors, H.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402 (1967)CrossRefGoogle Scholar
  24. 24.
    Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946–2949 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    McCulloch, J.H.: Simple consistent estimators of stable distribution parameters. Commun. Stat. Simul. Comput. 15(4), 1109–1136 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pasquini, M., Serva, M.: Clustering of volatility as a multiscale phenomenon. Eur. Phys. J. B Condens. Matter Complex Syst. 16(1), 195–201 (2000)CrossRefGoogle Scholar
  27. 27.
    Royuela-del Val, J., Simmross-Wattenberg, F., Alberola-Lopez, C.: Libstable: fast, parallel, and high-precision computation of \(\alpha \)-stable distributions in R, C/C++, and MATLAB. J. Stat. Softw. Art. 78(1), 1–25 (2017)Google Scholar
  28. 28.
    Scarf, P.A.: Estimation for a four parameter generalized extreme value distribution. Commun. Stat. Theory Methods 21(8), 2185–2201 (1992)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schuster, S.: Parameter estimation for the Cauchy distribution. In: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 350–353 (2012)Google Scholar
  30. 30.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3–4), 591–611 (1965)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shen, X., Xu, Zhang Y.H., Meng, S.: Observation of alpha-stable noise in the laser gyroscope data. IEEE Sens. J. 16(7), 1998–2003 (2016)CrossRefGoogle Scholar
  32. 32.
    Taleb, N.N.: Real-world Statistical Consequences of Fat Tails: Papers and Commentary. STEM Academic Press, Technical Incerto Collection (2018)Google Scholar
  33. 33.
    Verboven, S., Hubert, M.: LIBRA: a Matlab library for robust analysis. Chemom. Intell. Lab. Syst. 75, 127–136 (2005)CrossRefGoogle Scholar
  34. 34.
    Viswanathan, G.M., Fulco, U.L., Lyra, M.L., Serva, M.: The origin of fat tailed distributions in financial time series, Cornell University Library (2002). arXiv:cond-mat/0112484v4
  35. 35.
    Wong, T.S.T., Li, W.K.: A note on the estimation of extreme value distributions using maximum product of spacings. Lect. Notes Monogr. Ser. 52, 272–283 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations