Abstract
FAIR data principles declare data interoperability and reuse according to machine and human readable shared specifications. Adherence to this set of principles brings some implications for data infrastructures and research communities. Meaningful data exchange and reuse by humans and machines require formal specifications of research domains accompanying data and allowing automatic reasoning. Development of formal conceptual specifications in research communities can be stimulated by a necessity to reach semantic interoperability of data collections and components, and reuse of data resources. Usage of formal domain specifications reduces data heterogeneity costs. Formal reasoning allows meaningful search and verified reuse of data, methods, and processes from collections. These means can make research lifecycle in communities more efficient. A lifecycle includes collecting domain knowledge specifications, classifying all data, methods, and processes according to such specifications, reusing relevant data and methods, and collecting and sharing results for reuse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ASTERICS: Astronomy ESFRI & Research Infrastructure Cluster. https://www.asterics2020.eu/. Accessed 01 Jan 2019
EOSC Declaration. https://ec.europa.eu/research/openscience/pdf/eosc_declaration.pdf. Accessed 01 Jan 2019
FITS: Flexible Image Transport Specification. http://fits.gsfc.nasa.gov/
Guidelines on FAIR Data Management in Horizon 2020. Directorate-General for Research and Innovation European Commission (2016). http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-datamgt_en.pdf. Accessed 01 Jan 2019
Improving Future Research Communication and e-Scholarship. Bournea, P., Clarkb, T., Dalec, R., de Waardd, A., Hermane, I., Hovyf, E., Shotton, D. (eds.) The Future of Research Communications and e-Scholarship (2011). https://www.force11.org/. Accessed 01 Jan 2019
International Virtual Observatory Alliance. http://www.ivoa.net
Strasbourg Astronomical Data Center (CDS). http://cdsportal.u-strasbg.fr/
VOTable Format Definition. Version 1.3. IVOA Recommendation. IVOA (2013). http://www.ivoa.net/Documents/latest/VOT.html. Accessed 01 Jan 2019
Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: Introduction to Description Logic. Cambridge University Press, Cambridge (2017)
Belhajjame K., et al.: Workflow-centric research objects: a first class citizen in the scholarly discourse. In: ESWC2012 Workshop on the Future of Scholarly Communication in the Semantic Web (SePublica2012), Heraklion, pp. 1–12 (2012)
Doorn, P., Dillo, I.: FAIR Data in Trustworthy Data Repositories. DANS/ EUDAT/ OpenAIRE Webinar (2016). https://eudat.eu/events/webinar/fair-data-in-trustworthy-data-repositories-webinar. Accessed 01 Jan 2019
Hodge, G.M.: Best practices for digital archiving: an information life cycle approach. D-Lib Mag. 6(1) (2000). ISSN 1082-9873. http://www.dlib.org/dlib/january00/01hodge.html. Accessed 01 Jan 2019
Goble, C.A., De Roure, D.C.: myExperiment: social networking for workflow-using e-scientists. In: Workflows in Support of Large-Scale Science, pp. 1–2. ACM (2007)
Kalinichenko, L.A.: Compositional specification calculus for information systems development. In: Eder, J., Rozman, I., Welzer, T. (eds.) Advances in Databases and Information Systems. LNCS, vol. 1691, pp. 317–331. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48252-0_24
Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(6), 1811–1841 (1994)
Louys, M., et al.: Observation data model core components and its implementation in the table access protocol. Version 1.1. IVOA Recommendation, 09 May 2017. IVOA (2017). http://www.ivoa.net/documents/ObsCore/. Accessed 01 Jan 2019
Mons, B., et al.: Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European open science cloud. Inform. Serv. Use 37(1), 49–56 (2017). https://doi.org/10.3233/isu-170824
Schentz, H., le Franc, Y.: Building a semantic repository using B2SHARE. In: EUDAT 3rd Conference (2014)
Skvortsov, N.A.: Meaningful data interoperability and reuse among heterogeneous scientific communities. In: Kalinichenko, L., Manolopoulos, Y., Stupnikov, S., Skvortsov, N., Sukhomlin, V. (eds.) Selected Papers of the XX International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2018), vol. 2277, pp. 14–15. CEUR (2018). http://ceur-ws.org/Vol-2277/paper05.pdf. Accessed 01 Jan 2019
Skvortsov, N.A., Avvakumova, E.A., Bryukhov, D.O., et al.: Conceptual approach to astronomical problems. Astrophys. Bull. 71(1), 114–124 (2016). https://doi.org/10.1134/S1990341316010120
Skvortsov, N.A., Kalinichenko, L.A., Karchevsky, A.V., Kovaleva, D.A., Malkov, O.Y.: Matching and verification of multiple stellar systems in the identification list of binaries. In: Kalinichenko, L., Manolopoulos, Y., Malkov, O., Skvortsov, N., Stupnikov, S., Sukhomlin, V. (eds.) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2017. Communications in Computer and Information Science, vol. 822, pp. 102–112. Springer, Heiidelberg (2018). https://doi.org/10.1007/978-3-319-96553-6_8
Skvortsov, N.A., Vovchenko, A.E., Kalinichenko, L.A., Kovalev, D.A., Stupnikov S.A.: Metadata model for semantic search for rule-based workflow implementations. In: Systems and Means of Informatics. vol. 24, Iss. 4, pp. 4–28, IPI RAS, Moscow (2014). (In Russian)
Skvortsov, N.A., Kalinichenko, L.A., Kovalev, D.A.: Conceptualization of methods and experiments in data intensive research domains. In: Kalinichenko, L., Kuznetsov, S., Manolopoulos, Y. (eds.) Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2016). CCIS, vol. 706, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57135-5_1
Tolle, K.M., Tansley, D.S.W., Hey, A.J.G.: The Fourth paradigm: data-intensive scientific discovery [point of view]. Proc. IEEE. 99(8), 1334–1337 (2011). https://doi.org/10.1109/jproc.2011.2155130
Wilkinson, M., et al.: Interoperability and FAIRness through a novel combination of web technologies. PeerJ Preprints 5, e2522v2 (2017). https://doi.org/10.7287/peerj.preprints.2522v2
Wilkinson, M., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18
Wittenburg, P.: From persistent identifiers to digital objects to make data science more efficient. Data Intell. 1(1), 6–21 (2019). https://doi.org/10.1162/dint_a_00004
Wittenburg, P., Strawn, G.: Common Patterns in Revolutionary Infrastructures and data. RDA (2018). https://www.rd-alliance.org/sites/default/files/Common_Patterns_in_Revolutionising_Infrastructures-final.pdf. Accessed 01 Jan 2019
Acknowledgments
The work was supported by the Russian Foundation for Basic Research (grants 18-07-01434, 18-29-22096, 19-07-01198).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Skvortsov, N.A. (2019). Meaningful Data Reuse in Research Communities. In: Manolopoulos, Y., Stupnikov, S. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2018. Communications in Computer and Information Science, vol 1003. Springer, Cham. https://doi.org/10.1007/978-3-030-23584-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-23584-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23583-3
Online ISBN: 978-3-030-23584-0
eBook Packages: Computer ScienceComputer Science (R0)