Study of Twitter Communications on Cardiovascular Disease by State Health Departments

  • Aibek MusaevEmail author
  • Rebecca K. Britt
  • Jameson Hayes
  • Brian C. Britt
  • Jessica Maddox
  • Pezhman Sheinidashtegol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11512)


The present study examines Twitter conversations around cardiovascular health in order to assess the topical foci of these conversations as well as the role of various state departments of health. After scraping tweets containing relevant keywords, Latent Dirichlet Allocation (LDA) was used to identify the most important topics discussed around the issue, while PageRank was used to determine the relative prominence of different users. The results indicate that a small number of state departments of health play an especially significant role in these conversations. Furthermore, irregular events like ebola outbreaks also exert a strong influence over the volume of tweets made in general by state departments of health.


Twitter Cardiovascular disease LDA PageRank 


  1. 1.
    Batrinca, B., Treleaven, P.C.: Social media analytics: a survey of techniques, tools and platforms. AI Soc. 30(1), 89–116 (2015)CrossRefGoogle Scholar
  2. 2.
    Bostock, M., Ogievetsky, V., Heer, J.: \({\rm D}^3\) data-driven documents. TVCG 17(12), 2301–2309 (2011)Google Scholar
  3. 3.
    Britt, B.C., et al.: Finding the invisible leader: when a priori opinion leader identification is impossible. In: NCA (2017)Google Scholar
  4. 4.
    Burkhardt, S., Kramer, S.: Multi-label classification using stacked hierarchical Dirichlet processes with reduced sampling complexity. Knowl. Inf. Syst. 59(1), 93–115 (2019)CrossRefGoogle Scholar
  5. 5.
    Cai, Z., et al.: Impact of corpus size and dimensionality of LSA spaces from Wikipedia articles on AutoTutor answer evaluation. In: Proceedings of the 11th International Conference on Educational Data Mining, EDM 2018, Buffalo, NY, USA, 15–18 July 2018 (2018)Google Scholar
  6. 6.
    Centers for Disease Control and Prevention. Heart disease in the United States. Accessed 14 Jan 2019
  7. 7.
    Cha, M., et al.: Measuring user influence in Twitter: the million follower fallacy. In: ICWSM, p. 30 (2010). 10.10-17Google Scholar
  8. 8.
    Debortoli, S., et al.: Text mining for information systems researchers: an annotated topic modeling tutorial. In: CAIS 39, p. 7 (2016)CrossRefGoogle Scholar
  9. 9.
    Van Gaal, L.F., Mertens, I.L., De Block, C.E.: Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006)CrossRefGoogle Scholar
  10. 10.
    Kaltsa, V., et al.: Multiple hierarchical Dirichlet processes for anomaly detection in traffic. Comput. Vis. Image Underst. 169, 28–39 (2018)CrossRefGoogle Scholar
  11. 11.
    Katsimpras, G., Vogiatzis, D., Paliouras, G.: Determining influential users with supervised random walks. In: WWW, pp. 787–792 ACM (2015)Google Scholar
  12. 12.
    Kim, D.H., et al.: Multi-co-training for document classification using various document representations: TF-IDF, LDA, and Doc2Vec. Inf. Sci. 477, 15–29 (2019)CrossRefGoogle Scholar
  13. 13.
    Li, C., et al.: Mining dynamics of research topics based on the combined LDA and WordNet. IEEE Access 7, 6386–6399 (2019)CrossRefGoogle Scholar
  14. 14.
    Matei, S.A., Britt, B.C.: Structural Differentiation in Social Media: Adhocracy, Entropy and the “1% Effect”. Springer, Heidelberg (2017). Scholar
  15. 15.
    Moorehead, S.A., et al.: A new dimension of health care: systematic review of the uses, benefits, and limitations of social media for health communication. JMIR 15(4), e85 (2013)Google Scholar
  16. 16.
    More, J.S., Lingam, C.: A gradient-based methodology for optimizing time for influence diffusion in social networks. Soc. Netw. Anal. Min. 9(1), 5:1–5:10 (2019)CrossRefGoogle Scholar
  17. 17.
    Noro, T., et al.: Twitter user rank using keyword search. In: 22nd European-Japanese Conference on Information Modelling and Knowledge Bases (EJC 2012), XXIV, Prague, Czech Republic, 4–9 June 2012, pp. 31–48 (2012)Google Scholar
  18. 18.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Riquelme, F., González-Cantergiani, P.: Measuring user influence on Twitter: a survey. IPM 52(5), 949–975 (2016)Google Scholar
  20. 20.
    Sugihara, K.: Using complex numbers in website ranking calculations: a non-ad hoc alternative to Google’s PageRank. JSW 14(2), 58–64 (2019)CrossRefGoogle Scholar
  21. 21.
    Van Der Maaten, L.: Accelerating t-SNE using tree-based algorithms. JMLR 15(1), 3221–3245 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ventola, C.L.: Social media and health care professionals: benefits, risks, and best practices. P&T 39, 491–499 (2014)Google Scholar
  23. 23.
    Widmer, R.J., et al.: Social media platforms and heart failure. J. Cardiol. Fail. 23(11), 809–812 (2017)CrossRefGoogle Scholar
  24. 24.
    Yadav, C.S., Sharan, A.: A New LSA and entropy-based approach for automatic text document summarization. Int. J. Semantic Web Inf. Syst. 14(4), 1–32 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aibek Musaev
    • 1
    Email author
  • Rebecca K. Britt
    • 1
  • Jameson Hayes
    • 1
  • Brian C. Britt
    • 1
  • Jessica Maddox
    • 1
  • Pezhman Sheinidashtegol
    • 1
  1. 1.The University of AlabamaTuscaloosaUSA

Personalised recommendations