Skip to main content

Weighted Temporal Event Graphs

  • Chapter
  • First Online:

Part of the book series: Computational Social Sciences ((CSS))

Abstract

The times of temporal-network events and their correlations contain information on the function of the network and they influence dynamical processes taking place on it. To extract information out of correlated event times, techniques such as the analysis of temporal motifs have been developed. In this Chapter, we discuss a recently-introduced, more general framework that maps temporal-network structure into static graphs while retaining information on time-respecting paths and the time differences between their consequent events. This framework builds on weighted temporal event graphs: directed, acyclic graphs (DAGs) that contain a superposition of all temporal paths. We introduce the reader to the temporal event-graph mapping and associated computational methods and illustrate its use by applying the framework to temporal-network percolation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  ADS  Google Scholar 

  2. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234 (2015)

    Article  ADS  Google Scholar 

  3. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  4. Jo, H.-H., Karsai, M., Kertész, J., Kaski, K.: Circadian pattern and burstiness in human communication activity. New J. Phys. 14, 013055 (2012)

    Article  ADS  Google Scholar 

  5. Miritello, G., Lara, R., Cebrian, M., Moro, E.: Limited communication capacity unveils strategies for human interaction. Sci. Rep. 3, 1950 (2013)

    Article  ADS  Google Scholar 

  6. Aledavood, T., López, E., Roberts, S.G.B., Reed-Tsochas, F., Moro, E., Dunbar, R.I.M., Saramäki, J.: Daily rhythms in mobile telephone communication. PLoS One 10, e0138098 (2015)

    Article  Google Scholar 

  7. Navarro, H., Miritello, G., Canales, A., Moro, E.: Temporal patterns behind the strength of persistent ties. EPJ Data Sci. 6, 31 (2017)

    Article  Google Scholar 

  8. Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  9. Horváth, D.X., Kertész, J.: Spreading dynamics on networks: the role of burstiness, topology and non-stationarity. New J. Phys. 16, 073037 (2014)

    Article  ADS  Google Scholar 

  10. Nicosia, V., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying graphs. Chaos 22, 023101 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Kivelä, M., Cambe, J., Saramäki, J., Karsai, M.: Mapping temporal-network percolation to weighted, static event graphs. Sci. Rep. 8, 12357 (2018)

    Article  ADS  Google Scholar 

  12. Mellor, A.: The temporal event graph. J. Complex Netw. 6, 639–659 (2017)

    Article  MathSciNet  Google Scholar 

  13. Newman, M.E.J., Ziff, R.M.: Fast Monte Carlo algorithm for site or bond percolation. Phys. Rev. E 64(1), 016706 (2001)

    Article  ADS  Google Scholar 

  14. Leath, P.L.: Cluster size and boundary distribution near percolation threshold. Phys. Rev. B 14, 5046 (1976)

    Article  ADS  Google Scholar 

  15. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theory Exp. 2011, P11005+ (2011)

    Google Scholar 

  16. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs. In: Holme, P., Saramäki, J. (eds.) Temporal Networks, pp. 119–134. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Kovanen, L., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. 110(45), 18070–18075 (2013)

    Article  ADS  Google Scholar 

  18. Karsai, M., Noiret, A., Brovelli, A.: work in progress (2019)

    Google Scholar 

  19. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szábo, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104, 7332 (2007)

    Article  ADS  Google Scholar 

  20. Karimi, F., Holme, P.: Threshold model of cascades in temporal networks. Phys. A 392, 3476 (2013)

    Article  Google Scholar 

  21. Takaguchi, T., Masuda, N., Holme, P.: Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics. PLoS One 8, e68629 (2013)

    Article  ADS  Google Scholar 

  22. Backlund, V.-P., Saramäki, J., Pan, R.K.: Effects of temporal correlations on cascades: threshold models on temporal networks. Phys. Rev. E 89, 062815 (2014)

    Article  ADS  Google Scholar 

  23. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  ADS  Google Scholar 

  24. Milo, R.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  ADS  Google Scholar 

  25. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Applegate, D., Brodal, G.S., Panario, D., Sedgewick, R. (eds) Proceedings of ALENEX 2007, p. 135. SIAM, Philadelphia (2007)

    Google Scholar 

  26. Rocha, L.E., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7, e1001109 (2011)

    Article  ADS  Google Scholar 

  27. Bureau of Transportation Statistics. www.bts.gov (2017)

Download references

Acknowledgements

J.S. acknowledges support from the Academy of Finland, project “Digital Daily Rhythms” (project n:o 297195). M.K. acknowledges support from the Aalto Science Institute and the SoSweet ANR project (ANR-15-CE38-0011-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Saramäki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saramäki, J., Kivelä, M., Karsai, M. (2019). Weighted Temporal Event Graphs. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_6

Download citation

Publish with us

Policies and ethics