Secretome of Mesenchymal Stem Cells and its Impact on Chronic Obstructive Pulmonary Disease

  • Noridzzaida Ridzuan
  • Darius Widera
  • Badrul Hisham YahayaEmail author
Part of the Stem Cells in Clinical Applications book series (SCCA)


Chronic obstructive pulmonary disease (COPD) is characterized by irreversible loss of lung function that stem from two mechanisms, inflammation and senescence. Cross talk between these two mechanisms accelerate the development of COPD; thus, targeting these two pathways may offer benefits in the treatment of COPD. Growing evidence has shown mesenchymal stem cells as a promising candidate for the treatment of COPD. Over the years, many studies have been conducted to decipher the therapeutic effect of MSC in COPD and the mechanisms involved, in the hope of utilizing these cells as a new therapeutic strategy for COPD. However, the cell-based therapy using MSC is presented with many obstacles including low engraftment at the site of injury, the risk of microvascular occlusion, unwanted differentiation, and also the risk of malignant transformation. Recently, researchers begin to look at the possibility of using MSC-derived extracellular vesicles as an alternative to MSC. Here we review the effect of MSC and MSC-derived EV in modulating inflammation, and senescence in COPD. We also review current treatment and side effects in COPD, and senolytic drugs, a new therapeutic strategy targeting the senescent cells.


COPD Chronic obstructive pulmonary disease Secretome of mesenchymal stem cells 


  1. 1.
    From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD); 2017. Available from
  2. 2.
    Celli BR, et al. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):L612–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Grove D, Weiss DJ, Sueblinvong V. Mesenchymal stem cells: promise for chronic obstructive pulmonary disease therapy? Therapy. 2009;6(6):779–82.CrossRefGoogle Scholar
  5. 5.
    Hardie JA, Buist AS, Vollmer WM, Ellingsen I, Bakke PS, Mørkve O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur Respir J. 2002;20(5):1117–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Fukuchi Y. The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc. 2009;6(7):570–2.PubMedCrossRefGoogle Scholar
  7. 7.
    Hara H, Araya J, Ito S, Kobayashi K, Takasaka N, Yoshii Y, Wakui H, Kojima J, Shimizu K, Numata T, Kawaishi M. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L737–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration. 2010;80(1):59–70.PubMedCrossRefGoogle Scholar
  9. 9.
    D'Agostino B, Sullo N, Siniscalco D, De Angelis A, Rossi F. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease. Expert Opin Biol Ther. 2010;10(5):681–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Stevenson CS, et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1183–93. Available at: Scholar
  11. 11.
    Stevenson CS, Docx C, Webster R, Battram C, Hynx D, Giddings J, Cooper PR, Chakravarty P, Rahman I, Marwick JA, Kirkham PA. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol. 2007;293(5):L1183–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Mortaz E, Henricks PAJ, Kraneveld AD, Givi ME, Garssen J, Folkerts G. Cigarette smoke induces the release of CXCL-8 from human bronchial epithelial cells via TLRs and induction of the inflammasome. Biochim Biophys Acta. 2011;1812(9):1104–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Quint JK, Wedzicha JA. The neutrophil in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2007;119(5):1065–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Angelis N, Porpodis K, Zarogoulidis P, Spyratos D, Kioumis I, Papaiwannou A, Pitsiou G, Tsakiridis K, Mpakas A, Arikas S, Tsiouda T. Airway inflammation in chronic obstructive pulmonary disease. J Thorac Dis. 2014;6(Suppl 1):S167.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J. 2001;17(5):946–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsoumakidou M, Demedts IK, Brusselle GG, Jeffery PK. Dendritic cells in chronic obstructive pulmonary disease: new players in an old game. Am J Respir Crit Care Med. 2008;177(11):1180–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Lapperre TS, Postma DS, Gosman MM, Snoeck-Stroband JB, ten Hacken NH, Hiemstra PS, Timens W, Sterk PJ, Mauad T. Relation between duration of smoking cessation and bronchial inflammation in COPD. Airway Pathol COPD Smok Cessat Pharmacol Treat Interv. 2006;61(2):73.Google Scholar
  18. 18.
    Hansen MJ, Chan SPJ, Langenbach SY, Dousha LF, Jones JE, Yatmaz S, Seow HJ, Vlahos R, Anderson GP, Bozinovski S. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells. PLoS One. 2014;9(11):e113180.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, Diaz PT, Best TM. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am J Physiol Lung Cell Mol Physiol. 2014;307(3):L205–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SH, Goswami S, Grudo A, Li-zhen S, Bandi V, Goodnight-White S, Green L, Hacken-Bitar J, Huh J, Bakaeen F, Coxson HO. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13(5):567.PubMedCrossRefGoogle Scholar
  22. 22.
    Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37(3):614–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc. 2017;65(10):2297–301.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D, Hwang ES. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell. 2006;5(2):187–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J. 2015;29(7):2912–29.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Coates SS, Lehnert BE, Sharma S, Kindell SM, Gary RK. Beryllium induces premature senescence in human fibroblasts. J Pharamacol Exp Ther. 2007;322(1):70–9.CrossRefGoogle Scholar
  27. 27.
    Ross HH, Levkoff LH, Marshall GP, Caldeira M, Steindler DA, Reynolds BA, Laywell ED. Bromodeoxyuridine induces senescence in neural stem and progenitor cells. Stem Cells. 2008;26(12):3218–27.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sun Y, Hu X, Hu G, Xu C, Jiang H. Curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells. Biol Pharm Bull. 2015;38(8):1134–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Campisi J, di Fagagna FDA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729.PubMedCrossRefGoogle Scholar
  30. 30.
    Lujambio A. To clear, or not to clear (senescent cells)? That is the question. Bioessays. 2016;38(S1):S56–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995;55(22):5187–90.PubMedGoogle Scholar
  32. 32.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16 INK4a. Cell. 1997;88(5):593–602.PubMedCrossRefGoogle Scholar
  33. 33.
    Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci. 2001;98(21):12072–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):e301.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Karrasch S, Holz O, Jörres RA. Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respir Med. 2008;102(9):1215–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Tsuji T, Aoshiba K, Nagai A. Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(8):886–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Hara H, Araya J, Takasaka N, Fujii S, Kojima J, Yumino Y, Shimizu K, Ishikawa T, Numata T, Kawaishi M, Saito K. Involvement of creatine kinase b in cigarette smoke–induced bronchial epithelial cell senescence. Am J Respir Cell Mol Biol. 2012;46(3):306–12.PubMedCrossRefGoogle Scholar
  39. 39.
    Rajendrasozhan S, Yang SR, Kinnula VL, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):861–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Rönty M, Kinnula VL. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ikeno Y, Orihuela C, Van Remmen H. Inflammation in aging and age-related disease. Pathobiol Aging Age Relat Dis. 2011;1(1):14729.CrossRefGoogle Scholar
  42. 42.
    Serasanambati M, Chilakapati SR. Function of nuclear factor kappa B (NF-kB) in human diseases-a review. S Indian J Biol Sci. 2016;2(4):368–87.Google Scholar
  43. 43.
    Jurk D, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172. Available at: Scholar
  44. 44.
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;5:4172.CrossRefGoogle Scholar
  45. 45.
    Kim KS, Kang KW, Seu YB, Baek SH, Kim JR. Interferon-γ induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech Ageing Dev. 2009;130(3):179–88.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamagata K, Suzuki S, Tagami M. Docosahexaenoic acid prevented tumor necrosis factor alpha-induced endothelial dysfunction and senescence. Prostaglandins Leukot Essent Fatty Acids. 2016;104:11–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, Ranta F. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494(7437):361.PubMedCrossRefGoogle Scholar
  48. 48.
    Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci. 2015;112(46):E6301–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Aoshiba K, Nagai A. Chronic lung inflammation in aging mice. FEBS Lett. 2007;581(81):3512–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Amsellem V, Gary-Bobo G, Marcos E, Maitre B, Chaar V, Validire P, Stern JB, Noureddine H, Sapin E, Rideau D, Hue S. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(12):1358–66.PubMedCrossRefGoogle Scholar
  51. 51.
    Godtfredsen NS, et al. Risk of hospital admission for COPD following smoking cessation and reduction: a Danish population study. Thorax. 2002;57(11):967–72.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kanner RE, et al. Effects of randomized assignment to a smoking cessation intervention and changes in smoking habits on respiratory symptoms in smokers with early chronic obstructive pulmonary disease: the Lung Health Study. Am J Med. 1999;106(4):410–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Ejiofor S, Turner AM. Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med. 2013;7:17.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Barnes PJ. Theophylline for COPD. Thorax. 2006;61:742–3.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Nannini L, Cates CJ, Lasserson TJ, Poole P. Combined corticosteroid and long-acting beta-agonist in one inhaler versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2004;(3):CD003794.Google Scholar
  56. 56.
    Culpitt SV, Nightingale JA, Barnes PJ. Effect of fluticasone propionate on induced sputum matrix metalloproteinases and tissue inhibitors of metalloproteinases in patients with COPD. Am J Respir Crit Care Med. 1999;159(3):A812.CrossRefGoogle Scholar
  57. 57.
    Thomson NC, Angus R, Quebe-Fehling E, Brambilla R. Efficacy and tolerability of formoterol in elderly patients with reversible obstructive airways disease. Respir Med. 1998;92(3):562–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Lipworth BJ, Clark RA, Dhillon DP, McDevitt DG. Comparison of the effects of prolonged treatment with low and high doses of inhaled terbutaline on beta-adrenoceptor responsiveness in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;142(2):338–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Cazzola M, Imperatore F, Salzillo A, Di Perna F, Calderaro F, Imperatore A, Matera MG. Cardiac effects of formoterol and salmeterol in patients suffering from COPD with preexisting cardiac arrhythmias and hypoxemia. Chest. 1998;114(2):411–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Barnes PJ. Theophylline in chronic obstructive pulmonary disease: new horizons. Proc Am Thorac Soc. 2005;2(4):334–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, Decramer M. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359(15):1543–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300(12):1439–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Kesten S, Jara M, Wentworth C, Lanes S. Pooled clinical trial analysis of tiotropium safety. Chest J. 2006;130(6):1695–703.CrossRefGoogle Scholar
  64. 64.
    Dunn LJ, Buhl R, Lassen C, Henley M, Kramer B. Blinded 12-week comparison of once-daily indacaterol and tiotropium in COPD. Chest J. 2010;138(4_MeetingAbstracts):719A–719A.CrossRefGoogle Scholar
  65. 65.
    D’Urzo AD, Rennard SI, Kerwin EM, Mergel V, Leselbaum AR, Caracta CF. Efficacy and safety of fixed-dose combinations of aclidinium bromide/formoterol fumarate: the 24-week, randomized, placebo-controlled AUGMENT COPD study. Respir Res. 2014;15(1):123.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Loke YK, Cavallazzi R, Singh S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66(8):699–708.PubMedCrossRefGoogle Scholar
  67. 67.
    Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax. 2013;68(11):1029–36.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dransfield MT, Bourbeau J, Jones PW, Hanania NA, Mahler DA, Vestbo J, Wachtel A, Martinez FJ, Barnhart F, Sanford L, Lettis S. Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir Med. 2013;1(3):210–23.PubMedCrossRefGoogle Scholar
  69. 69.
    Pauwels RA, Löfdahl CG, Laitinen LA, Schouten JP, Postma DS, Pride NB, Ohlsson SV. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med. 1999;340(25):1948–53.CrossRefGoogle Scholar
  70. 70.
    Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O'hara SP. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W, Alsafadi HN, Ota C, Costa R, Schiller HB, Lindner M, Wagner DE. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur Respir J. 2017;50(2):1602367.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, Corbo L. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8:422.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955.CrossRefGoogle Scholar
  75. 75.
    Aguilera DG, Tsimberidou AM. Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag. 2009;5:281.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Niu G, Li Z, Cao Q, Chen X. Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with 64Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging. 2009;36(9):1510.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Rudin CM, Hann CL, Garon EB, De Oliveira MR, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS, Ranson MR. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012;18(11):3163–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, Pinsky DJ, Peters-Golden M, Lama VN. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 2008;181(6):4389–96.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tabera S, Pérez-Simón JA, Díez-Campelo M, Sánchez-Abarca LI, Blanco B, López A, Benito A, Ocio E, Sánchez-Guijo FM, Cañizo C, San Miguel JF. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 2008;93(9):1301–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep. 2016;6:38308.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, Li S, Zou H, Zhao J, Wang L, Qi Y. Effect of TGF-β1 on the migration and recruitment of mesenchymal stem cells after vascular balloon injury: involvement of matrix metalloproteinase-14. Sci Rep. 2016;6:21176.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Li H, Fan X, Kovi RC, Jo Y, Moquin B, Konz R, Stoicov C, Kurt-Jones E, Grossman SR, Lyle S, Rogers AB. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 2007;67(22):10889–98.PubMedCrossRefGoogle Scholar
  84. 84.
    Breitbach M, Bostani T, Roell W, Xia Y, Dewald O, Nygren JM, Fries JW, Tiemann K, Bohlen H, Hescheler J, Welz A. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110(4):1362–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Mousavinejad M, Andrews PW, Shoraki EK. Current biosafety considerations in stem cell therapy. Cell J (Yakhteh). 2016;18(2):281.Google Scholar
  86. 86.
    van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, Olsen PC, Diaz BL, Takyia CM, Freitas IP, Rocha NN. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res. 2014;15(1):118.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liu X, Fang Q, Kim H. Preclinical studies of mesenchymal stem cell (MSC) administration in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. PLoS One. 2016;11(6):e0157099.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cerrada A, de la Torre P, Grande J, Haller T, Flores AI, Pérez-Gil J. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes. PLoS One. 2014;9(10):e110195.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Furuya N, Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Sakamaki A, Kida H, Handa H, Nishine H, Mineshita M, Miyazawa T. Cell therapy with adipose tissue-derived stem/stromal cells for elastase-induced pulmonary emphysema in rats. Regen Med. 2012;7(4):503–12.PubMedCrossRefGoogle Scholar
  91. 91.
    Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest J. 2013;143(6):1590–8.CrossRefGoogle Scholar
  92. 92.
    Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, Oostendorp J, Bajema I, Versteegh MIM, Taube C, Hiemstra PS. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cai B, et al. Bone marrow-derived mesenchymal stem cells protected rat cardiomyocytes from premature senescence. Int J Cardiol. 2012;154(2):180–2.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang M, et al. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med. 2015;4(5):494–502.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Xie C, Jin J, Lv X, Tao J, Wang R, Miao D. Anti-aging effect of transplanted amniotic membrane mesenchymal stem cells in a premature aging model of Bmi-1 deficiency. Sci Rep. 2015;5:13975.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012;44(1):11–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142–57.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo ABH, Padmanabhan J, Lee CN, de Kleijn DP, Lim SK. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-gonzalez A, Kourembanas S. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–11.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther. 2018;9(1):17.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–25.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, Wang X. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 2018;9(2):218.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Liu T, Zhu K, Ke C, Yang S, Yang F, Li Z, Zhang Z. Mesenchymal stem cells inhibited development of lung cancer induced by chemical carcinogens in a rat model. Am J Transl Res. 2017;9(6):2891.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Del Fattore A, Luciano R, Saracino R, Battafarano G, Rizzo C, Pascucci L, Alessandri G, Pessina A, Perrotta A, Fierabracci A, Muraca M. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther. 2015;15(4):495–504.PubMedCrossRefGoogle Scholar
  105. 105.
    Tofiño-Vian M, Guillén MI, del Caz P, Dolores M, Castejón MA, Alcaraz MJ. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid Med Cell Longev. 2017;2017:7197598.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315–317.PubMedCrossRefGoogle Scholar
  107. 107.
    Bonnaure G, Gervais-St-Amour C, Néron S. Bone marrow mesenchymal stem cells enhance the differentiation of human switched memory B Lymphocytes into plasma cells in serum-free medium. J Immunol Res. 2016:1–18.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Noridzzaida Ridzuan
    • 1
  • Darius Widera
    • 2
  • Badrul Hisham Yahaya
    • 1
    Email author
  1. 1.Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI)Universiti Sains MalaysiaPenangMalaysia
  2. 2.Stem Cell Biology and Regenerative Medicine Group, School of PharmacyUniversity of ReadingReadingUK

Personalised recommendations