Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment

  • Nazmul Haque
  • Thamil Selvee Ramasamy
  • Noor Hayaty Abu KasimEmail author
Part of the Stem Cells in Clinical Applications book series (SCCA)


Autoimmune diseases are among the major causes of morbidity and mortality globally, in which women are more vulnerable than men. Autoimmune disease is a pathological condition in which immune cells attack own cells as a result of losing self-tolerance. Several immunosuppressant drugs have been developed to treat autoimmune diseases. However, these drugs help to control the severity of the diseases rather than treating the root causes. In recent years, immunomodulatory properties of mesenchymal stem cells (MSCs) have been explored, wherein these cells exhibit such properties through secretory factors. However, the secretion of immunomodulatory factors from MSCs is very dynamic and depends upon the inflamed microenvironment. Besides, the potential of extracellular vesicles (EVs) from MSCs has also been in the investigation in order to develop treatment for autoimmune diseases. In this review, we attempt to describe the cellular and molecular mechanism behind the pathogenesis of autoimmune disease, while the immunomodulatory properties and the potential of MSCs and their EVs in treating these disorders have also been discussed.


Mesenchymal stem cells Autoimmune diseases Extracellular vesicles Immunomodulatory 



Antigen-presenting cells


Bone marrow


Cytotoxic T-lymphocyte antigen


Dendritic cells


Embryonic stem cells


Extracellular vesicles


Gingival MSCs


Hepatocyte growth factor


Human leukocyte antigen G


Human/murine/canine adipose derived










Induced pluripotent stem cells


Leukemia inhibitory factor


Mesenchymal stem cells


Nuclear factor kappa B


Natural killer


Natural killer T


Nitric oxide


Neural progenitor


Prostaglandin E2


Reactive oxygen species


Superoxide dismutase


Signal transducers and activators of transcription


T-cell receptor


Transforming growth factor β




Toll-like receptors


Tumor necrosis factor α


Regulatory T-cells


Suppressor T-cells


Umbilical cord



This work was supported by High Impact Research MOHE Grant UM.C/625/1/HIR/MOHE/DENT/01 from the Ministry of Higher Education Malaysia and University of Malaya Research Grant UMRG RP019/13HTM.

Conflicts of Interest: The authors confirm that there are no conflicts of interest related to this study.


  1. 1.
    Cooper GS, Bynum MLK, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3-4):197–207.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yamamoto K. Introduction: autoimmunity special issue. Int Immunol. 2016;28(4):153–4.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35(3):347–69.PubMedCrossRefGoogle Scholar
  4. 4.
    Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Scudellari M. News feature: cleaning up the hygiene hypothesis. Proc Natl Acad Sci. 2017;114(7):1433–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2011;40(2):216–29.PubMedCrossRefGoogle Scholar
  7. 7.
    Rioux JD, Abbas AK. Paths to understanding the genetic basis of autoimmune disease. Nature. 2005;435:584.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang S-H, Gao C-y, Li L, Chang C, Leung Patrick SC, Gershwin ME, Lian Z-X. The molecular basis of immune regulation in autoimmunity. Clin Sci. 2018;132(1):43–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chandrashekara S. The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian J Pharmacol. 2012;44(6):665–71.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Blazquez-Prunera A, Almeida CR, Barbosa MA. Human bone marrow mesenchymal stem/stromal cells preserve their immunomodulatory and chemotactic properties when expanded in a human plasma derived xeno-free medium. Stem Cells Int. 2017;2017:2185351.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fayyad-Kazan H, Faour WH, Badran B, Lagneaux L, Najar M. The immunomodulatory properties of human bone marrow-derived mesenchymal stromal cells are defined according to multiple immunobiological criteria. Inflamm Res. 2016;65(6):501–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kimbrel EA, Kouris NA, Yavanian GJ, Chu J, Qin Y, Chan A, Singh RP, McCurdy D, Gordon L, Levinson RD, Lanza R. Mesenchymal stem cell population derived from human pluripotent stem cells displays potent immunomodulatory and therapeutic properties. Stem Cells Dev. 2014;23(14):1611–24.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Molina ER, Smith BT, Shah SR, Shin H, Mikos AG. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J Control Release. 2015;219:107–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang LT, Jiang SS, Ting CH, Hsu PJ, Chang CC, Sytwu HK, Liu KJ, Yen BL. Differentiation of mesenchymal stem cells from human induced pluripotent stem cells results in downregulation of c-Myc and DNA replication pathways with immunomodulation toward CD4 and CD8 cells. Stem Cells. 2018;36(6):903–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Bohana-Kashtan O, Civin CI. Fas ligand as a tool for immunosuppression and generation of immune tolerance. Stem Cells. 2004;22(6):908–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Mondino A, Khoruts A, Jenkins MK. The anatomy of T-cell activation and tolerance. Proc Natl Acad Sci U S A. 1996;93(6):2245–52.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117(5):1119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Fathman CG, Lineberry NB. Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol. 2007;7:599.PubMedCrossRefGoogle Scholar
  21. 21.
    Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Kalekar LA, Mueller DL. Relationship between CD4 regulatory T cells and anergy in vivo. J Immunol. 2017;198(7):2527–33.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pelanda R, Torres RM. Central B-cell tolerance: where selection begins. Cold Spring Harb Perspect Biol. 2012;4(4):a007146.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Bretscher P, Cohn M. A theory of self-nonself discrimination. Science. 1970;169(3950):1042–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Hodgkin PD, Basten A. B cell activation, tolerance and antigen-presenting function. Curr Opin Immunol. 1995;7(1):121–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith DA, Germolec DR. Introduction to immunology and autoimmunity. Environ Health Perspect. 1999;107(Suppl 5):661–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–77.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sozzani S, Del Prete A, Bosisio D. Dendritic cell recruitment and activation in autoimmunity. J Autoimmun. 2017;85:126–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Lan W, Luc Van K. Natural killer T cells and autoimmune disease. Curr Mol Med. 2009;9(1):4–14.CrossRefGoogle Scholar
  31. 31.
    Ronchi F, Falcone M. Immune regulation by invariant NKT cells in autoimmunity. Front Biosci. 2008;13:4827–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Ljunggren HG. Natural killer cells in human autoimmunity. Curr Opin Immunol. 2009;21(6):634–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthritis Res Ther. 2013;15(4):216.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mailliard RB, Son Y-I, Redlinger R, Coates PT, Giermasz A, Morel PA, Storkus WJ, Kalinski P. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol. 2003;171(5):2366–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Piccioli D, Sbrana S, Melandri E, Valiante NM. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med. 2002;195(3):335–41.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pallmer K, Oxenius A. Recognition and regulation of T Cells by NK Cells. Front Immunol. 2016;7:251.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Durinovic-Belló I, Schlosser M, Riedl M, Maisel N, Rosinger S, Kalbacher H, Deeg M, Ziegler M, Elliott J, Roep BO, Karges W, Boehm BO. Pro- and anti-inflammatory cytokine production by autoimmune T cells against preproinsulin in HLA-DRB1∗04, DQ8 Type 1 diabetes. Diabetologia. 2004;47(3):439–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33(3-4):222–30.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chang M-ONCY. Dong C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol. 2009;39(1):216–24.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JWC. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther. 2010;12(1):204.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jain N, Nguyen H, Chambers C, Kang J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci. 2010;107(4):1524–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, McDonald TJ, Rajala H, Ramelius A, Barton J, Heiskanen K, Heiskanen-Kosma T, Kajosaari M, Murphy NP, Milenkovic T, Seppänen M, Lernmark Å, Mustjoki S, Otonkoski T, Kere J, Morgan NG, Ellard S, Hattersley AT. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46:812.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kluger MA, Melderis S, Nosko A, Goerke B, Luig M, Meyer MC, Turner J-E, Meyer-Schwesinger C, Wegscheid C, Tiegs G, Stahl RAK, Panzer U, Steinmetz OM. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 2016;89(1):158–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Pallandre JR, Brillard E, Crehange G, Radlovic A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol. 2007;179(11):7593–604.PubMedCrossRefGoogle Scholar
  45. 45.
    Egwuagu CE. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine. 2009;47(3):149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Green NM, Marshak-Rothstein A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin Immunol. 2011;23(2):106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Krieg AM, Vollmer J. Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev. 2007;220:251–69.PubMedCrossRefGoogle Scholar
  48. 48.
    Shlomchik MJ. Activating systemic autoimmunity: B’s, T’s, and tolls. Curr Opin Immunol. 2009;21(6):626–33.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Summers SA, Hoi A, Steinmetz OM, O’Sullivan KM, Ooi JD, Odobasic D, Akira S, Kitching AR, Holdsworth SR. TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. J Autoimmun. 2010;35(4):291–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Bacher S, Schmitz ML. The NF-kappaB pathway as a potential target for autoimmune disease therapy. Curr Pharm Des. 2004;10(23):2827–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R. The protective role of ROS in autoimmune disease. Trends Immunol. 2009;30(5):201–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Mahbub ES, Haque N, Salma U, Ahmed A. Immune modulation in response to stress and relaxation. Pak J Biol Sci. 2011;14(6):363–74.CrossRefGoogle Scholar
  53. 53.
    Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. 2012;18(2):128–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Plock JA, Schnider JT, Solari MG, Zheng XX, Gorantla VS. Perspectives on the use of mesenchymal stem cells in vascularized composite allotransplantation. Front Immunol. 2013;4:175.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Engela AU, Hoogduijn MJ, Boer K, Litjens NH, Betjes MG, Weimar W, Baan CC. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin Exp Immunol. 2013;173(2):343–54.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gieseke F, Kruchen A, Tzaribachev N, Bentzien F, Dominici M, Muller I. Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol. 2013;43(10):2741–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Hinden L, Shainer R, Almogi-Hazan O, Or R. Ex vivo induced regulatory human/murine mesenchymal stem cells as immune modulators. Stem Cells. 2015;33(7):2256–67.PubMedCrossRefGoogle Scholar
  59. 59.
    Huang F, Chen M, Chen W, Gu J, Yuan J, Xue Y, Dang J, Su W, Wang J, Zadeh HH, He X, Rong L, Olsen N, Zheng SG. Human gingiva-derived mesenchymal stem cells inhibit xeno-graft-versus-host disease via CD39-CD73-adenosine and IDO signals. Front Immunol. 2017;8:68.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57(11):1192–203.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Lotfi J, Khorramnia S, Motamed MR, Togha M, Harirchian MH, Moghadam NB, Alikhani K, Yadegari S, Jafarian S, Gheini MR. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Fernandez O, Izquierdo G, Fernandez V, Leyva L, Reyes V, Guerrero M, Leon A, Arnaiz C, Navarro G, Paramo MD, Cuesta A, Soria B, Hmadcha A, Pozo D, Fernandez-Montesinos R, Leal M, Ochotorena I, Galvez P, Geniz MA, Baron FJ, Mata R, Medina C, Caparros-Escudero C, Cardesa A, Cuende N. Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: a triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. PLoS One. 2018;13(5):e0195891.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, Sara G, Sadiq SA. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hou ZL, Liu Y, Mao XH, Wei CY, Meng MY, Liu YH, Zhuyun Yang Z, Zhu H, Short M, Bernard C, Xiao ZC. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr. 2013;7(5):404–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yan L, Jiang B, Niu Y, Wang H, Li E, Yan Y, Sun H, Duan Y, Chang S, Chen G, Ji W, Xu RH, Si W. Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discov. 2018;5:28.Google Scholar
  66. 66.
    Zafranskaya M, Nizheharodava D, Yurkevich M, Ivanchik G, Demidchik Y, Kozhukh H, Fedulov A. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol. 2013;78(5):455–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang H, Liang J, Tang X, Wang D, Feng X, Wang F, Hua B, Wang H, Sun L. Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Res Ther. 2017;19(1):165.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, Yang LY, Lee OK. Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant. 2011;20(2):245–57.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen J, Wang Q, Feng X, Zhang Z, Geng L, Xu T, Wang D, Sun L. Umbilical cord-derived mesenchymal stem cells suppress autophagy of T cells in patients with systemic lupus erythematosus via transfer of mitochondria. Stem Cells Int. 2016;2016:4062789.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Choi EW, Shin IS, Park SY, Park JH, Kim JS, Yoon EJ, Kang SK, Ra JC, Hong SH. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum. 2012;64(1):243–53.PubMedCrossRefGoogle Scholar
  71. 71.
    Li X, Wang D, Liang J, Zhang H, Sun L. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 2013;48(4):544–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Park MJ, Kwok SK, Lee SH, Kim EK, Park SH, Cho ML. Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant. 2015;24(11):2367–77.PubMedCrossRefGoogle Scholar
  73. 73.
    Alunno A, Montanucci P, Bistoni O, Basta G, Caterbi S, Pescara T, Pennoni I, Bini V, Bartoloni E, Gerli R, Calafiore R. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjogren’s syndrome. Rheumatology (Oxford). 2015;54(1):163–8.CrossRefGoogle Scholar
  74. 74.
    Hai B, Shigemoto-Kuroda T, Zhao Q, Lee RH, Liu F. Inhibitory effects of iPSC-MSCs and their extracellular vesicles on the onset of sialadenitis in a mouse model of Sjogren’s syndrome. Stem Cells Int. 2018;2018:2092315.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Khalili S, Liu Y, Kornete M, Roescher N, Kodama S, Peterson A, Piccirillo CA, Tran SD. Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjogren’s-like disease. PLoS One. 2012;7(6):e38615.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liu R, Su D, Zhou M, Feng X, Li X, Sun L. Umbilical cord mesenchymal stem cells inhibit the differentiation of circulating T follicular helper cells in patients with primary Sjogren’s syndrome through the secretion of indoleamine 2,3-dioxygenase. Rheumatology (Oxford). 2015;54(2):332–42.CrossRefGoogle Scholar
  77. 77.
    Forbes GM, Sturm MJ, Leong RW, Sparrow MP, Segarajasingam D, Cummins AG, Phillips M, Herrmann RP. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’ disease refractory to biologic therapy. Clin Gastroenterol Hepatol. 2014;12(1):64–71.PubMedCrossRefGoogle Scholar
  78. 78.
    Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136(3):978–89.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhang J, Lv S, Liu X, Song B, Shi L. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver. 2018;12(1):73–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Sah SK, Agrahari G, Nguyen CT, Kim YS, Kang KS, Kim TY. Enhanced therapeutic effects of human mesenchymal stem cells transduced with superoxide dismutase 3 in a murine atopic dermatitis-like skin inflammation model. Allergy. 2018;73(12):2364–76.PubMedCrossRefGoogle Scholar
  81. 81.
    Villatoro AJ, Hermida-Prieto M, Fernandez V, Farinas F, Alcoholado C, Rodriguez-Garcia MI, Marinas-Pardo L, Becerra J. Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec. 2018;183(21):654.PubMedCrossRefGoogle Scholar
  82. 82.
    Haque N, Kasim NH, Rahman MT. Optimization of pre-transplantation conditions to enhance the efficacy of mesenchymal stem cells. Int J Biol Sci. 2015;11(3):324–34.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Najar M, Raicevic G, Boufker HI, Fayyad-Kazan H, De Bruyn C, Meuleman N, Bron D, Toungouz M, Lagneaux L. Adipose-tissue-derived and Wharton’s jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Eng Part A. 2010;16(11):3537–46.PubMedCrossRefGoogle Scholar
  84. 84.
    Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. Immunol Lett. 2015;168(2):140–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Haque N, Abu Kasim NH. Pooled human serum increases regenerative potential of in vitro expanded stem cells from human extracted deciduous teeth. In: Advances in experimental medicine and biology. Boston, MA: Springer; 2017. p. 1–16. Scholar
  86. 86.
    Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, Zhao S, Luo L, Wei H, Guan L, Gao Z, Li Y, Wang L, Liu D, Gao C. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation. Stem Cells Dev. 2016;25(24):1874–83.PubMedCrossRefGoogle Scholar
  87. 87.
    Del Fattore A, Luciano R, Pascucci L, Goffredo BM, Giorda E, Scapaticci M, Fierabracci A, Muraca M. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24(12):2615–27.PubMedCrossRefGoogle Scholar
  88. 88.
    Koch M, Lemke A, Lange C. Extracellular vesicles from MSC modulate the immune response to renal allografts in a MHC disparate rat model. Stem Cells Int. 2015;2015:486141.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nazmul Haque
    • 1
    • 2
  • Thamil Selvee Ramasamy
    • 3
  • Noor Hayaty Abu Kasim
    • 2
    • 4
    Email author
  1. 1.Department of Oral Biology and Biomedical Sciences, Faculty of DentistryMAHSA UniversitySelangorMalaysia
  2. 2.Regenerative Dentistry Research Group, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  4. 4.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations