Current Status of Stem Cell Transplantation for Autoimmune Diseases

  • Ngoc Bich Vu
  • Phuc Van PhamEmail author
Part of the Stem Cells in Clinical Applications book series (SCCA)


Autoimmune diseases (ADs) are common conditions of human health. These diseases can significantly reduce the patients’ quality of life. Although most autoimmune diseases can be controlled by certain immunosuppressive drugs, after long-term treatment, the therapeutic efficacy of these drugs can be significantly decreased while side effects may be increased. Recent reports have shown that stem cell therapy could improve the symptoms of ADs. Both hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been evaluated for the treatment of ADs in both animal models and clinical trials. While HSC transplantation (HSCT) can replace the immune system via autologous HSCT or allogeneic HSCT, MSC transplantation (MSCT) can improve ADs by other mechanisms which modulate the host’s immune system to repair the injured tissues via secreted factors. This chapter reviews and highlights recent therapeutic approaches and, particularly, the efficacy of stem cell therapy in AD treatment.


Autoimmune disease Hematopoietic stem cells Mesenchymal stem cells stem cell therapy 



Autoimmune disease


Adipose-derived stem cell


Bone marrow


Blood urea nitrogen


Crohn’s disease


Crohn’s Disease Activity Index




Granulocyte-colony stimulating factor


Graft-versus-host disease


Health Assessment Questionnaire


Hematopoietic stem cell


Hematopoietic stem cell transplantation




Intraperitoneal injection


Intravenous infusion


Modified Rodnan skin score


Multiple sclerosis


Mesenchymal stem cell


Mesenchymal stem cell transplantation


Rheumatoid arthritis


Stem cells


Systemic lupus erythematosus


SLE disease activity index


Systemic sclerosis


Stromal vascular fraction


T helper


Regulatory T cells


Umbilical cord



This research was funded and supported by Fostering Innovation through Research, Science and Technology (FIRST), Viet Nam via project 15/FIRST/2a/SCI.


  1. 1.
    Report, N.I.o.H.A.D.C.C. Bethesda, MD: The Institutes; 2002.Google Scholar
  2. 2.
    Jacobson DL, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Jantunen E, Myllykangas-Luosujarvi R. Stem cell transplantation for treatment of severe autoimmune diseases: current status and future perspectives. Bone Marrow Transplant. 2000;25(4):351–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiesik-Szewczyk E, et al. Target therapies in systemic lupus erythematosus: current state of the art. Mini Rev Med Chem. 2010;10(10):956–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Kamen DL. Environmental influences on systemic lupus erythematosus expression. Rheum Dis Clin. 2014;40(3):401–12.CrossRefGoogle Scholar
  7. 7.
    Molokhia M, McKeigue P. Systemic lupus erythematosus: genes versus environment in high risk populations. Lupus. 2006;15(11):827–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Parks CG, et al. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2017;31(3):306–20.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Brand O, Gough S, Heward J. HLA, CTLA-4 and PTPN22: the shared genetic master-key to autoimmunity? Expert Rev Mol Med. 2005;7(23):1–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Eriksson D, et al. Common genetic variation in the autoimmune regulator (AIRE) locus is associated with autoimmune Addison’s disease in Sweden. Sci Rep. 2018;8(1):8395.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yang S-H, et al. The molecular basis of immune regulation in autoimmunity. Clin Sci. 2018;132(1):43–67.CrossRefGoogle Scholar
  12. 12.
    Wahren-Herlenius M, Dörner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet. 2013;382(9894):819–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2012;40(2):216–29.PubMedCrossRefGoogle Scholar
  14. 14.
    Atassi MZ, et al. Molecular mechanisms of autoimmunity. Autoimmunity. 2008;41(2):123–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Kamradt T, Mitchison NA. Tolerance and autoimmunity. N Engl J Med. 2001;344(9):655–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Bach J-F. Immunosuppressive therapy of autoimmune diseases. Trends Pharmacol Sci. 1993;14(5):213–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Chandrashekara S. The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian J Pharmacol. 2012;44(6):665.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ogawa M, LaRue AC, Mehrotra M. Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol Dis. 2013;51(1):3–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639–48.PubMedCrossRefGoogle Scholar
  20. 20.
    Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102(10):3483–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41.PubMedCrossRefGoogle Scholar
  23. 23.
    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Corcione A, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.CrossRefGoogle Scholar
  25. 25.
    Bartholomew A, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Ford CE, et al. Cytological identification of radiation-chimaeras. Nature. 1956;177(4506):452–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Morstyn G, Nicola NA, Metcalf D. Purification of hemopoietic progenitor cells from human marrow using a fucose-binding lectin and cell sorting. Blood. 1980;56(5):798–805.PubMedGoogle Scholar
  29. 29.
    Sutherland HJ, et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A. 1990;87(9):3584–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sutherland HJ, et al. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989;74(5):1563–70.PubMedGoogle Scholar
  31. 31.
    Bhatia M, et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4(9):1038–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Guo Y, Lubbert M, Engelhardt M. CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells. 2003;21(1):15–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Doi H, et al. Pluripotent hemopoietic stem cells are c-kit<low. Proc Natl Acad Sci U S A. 1997;94(6):2513–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Oliveira M, et al. Does ex vivo CD34+ positive selection influence outcome after autologous hematopoietic stem cell transplantation in systemic sclerosis patients? Bone Marrow Transplant. 2016;51(4):501.PubMedCrossRefGoogle Scholar
  35. 35.
    Moore J, et al. A pilot randomized trial comparing CD34-selected versus unmanipulated hemopoietic stem cell transplantation for severe, refractory rheumatoid arthritis. Arthritis Rheum. 2002;46(9):2301–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Ayano M, et al. CD34-selected versus unmanipulated autologous haematopoietic stem cell transplantation in the treatment of severe systemic sclerosis: a post hoc analysis of a phase I/II clinical trial conducted in Japan. Arthritis Res Ther. 2019;21(1):30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Burt RK, et al. Effect of disease stage on clinical outcome after syngeneic bone marrow transplantation for relapsing experimental autoimmune encephalomyelitis. Blood. 1998;91(7):2609–16.PubMedGoogle Scholar
  38. 38.
    Karussis DM, et al. Prevention and reversal of adoptively transferred, chronic relapsing experimental autoimmune encephalomyelitis with a single high dose cytoreductive treatment followed by syngeneic bone marrow transplantation. J Clin Invest. 1993;92(2):765–72.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pestronk A, et al. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis. Ann Neurol. 1983;14(2):235–41.PubMedCrossRefGoogle Scholar
  40. 40.
    van Bekkum DW, et al. Regression of adjuvant-induced arthritis in rats following bone marrow transplantation. Proc Natl Acad Sci U S A. 1989;86(24):10090–4.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kamiya M, et al. Effective treatment of mice with type II collagen induced arthritis with lethal irradiation and bone marrow transplantation. J Rheumatol. 1993;20(2):225–30.PubMedGoogle Scholar
  42. 42.
    Beilhack GF, et al. Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes. 2003;52(1):59–68.PubMedCrossRefGoogle Scholar
  43. 43.
    Ikehara S. Treatment of autoimmune diseases by hematopoietic stem cell transplantation. Exp Hematol. 2001;29(6):661–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith-Berdan S, et al. Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood. 2007;110(4):1370–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Tyndall A, et al. Treatment of systemic sclerosis with autologous haemopoietic stem cell transplantation. Lancet. 1997;349(9047):254.PubMedCrossRefGoogle Scholar
  46. 46.
    Snowden JA, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017;1(27):2742–55.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gratwohl A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 2005;35(9):869.PubMedCrossRefGoogle Scholar
  48. 48.
    Farge D, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica. 2010;95(2):284–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Farge D, et al. Autologous stem cell transplantation in the treatment of systemic sclerosis: report from the EBMT/EULAR registry. Ann Rheum Dis. 2004;63(8):974–81.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Burt RK, et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet. 2011;378(9790):498–506.PubMedCrossRefGoogle Scholar
  51. 51.
    van Laar JM, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014;311(24):2490–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Naraghi K, van Laar JM. Update on stem cell transplantation for systemic sclerosis: recent trial results. Curr Rheumatol Rep. 2013;15(5):326.PubMedCrossRefGoogle Scholar
  53. 53.
    Del Papa N, et al. Autologous hematopoietic stem cell transplantation has better outcomes than conventional therapies in patients with rapidly progressive systemic sclerosis. Bone Marrow Transplant. 2017;52(1):53.PubMedCrossRefGoogle Scholar
  54. 54.
    Ippolito A, Petri M. An update on mortality in systemic lupus erythematosus. Clin Exp Rheumatol. 2008;26(5):S72.PubMedGoogle Scholar
  55. 55.
    Leone A, et al. Autologous hematopoietic stem cell transplantation in systemic lupus erythematosus and antiphospholipid syndrome: a systematic review. Autoimmun Rev. 2017;16(5):469–77.PubMedCrossRefGoogle Scholar
  56. 56.
    Nelson J, et al. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol Suppl. 1997;48:23–9.PubMedGoogle Scholar
  57. 57.
    Lowenthal RM, Francis H, Gill DS. Twenty-year remission of rheumatoid arthritis in 2 patients after allogeneic bone marrow transplant. J Rheumatol. 2006;33(4):812–3.Google Scholar
  58. 58.
    McKendry RJ, Huebsch L, Leclair B. Progression of rheumatoid arthritis following bone marrow transplantation. A case report with a 13‐year followup. Arthritis Rheum. 1996;39(7):1246–53.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Snowden J, et al. Allogeneic bone marrow transplantation from a donor with severe active rheumatoid arthritis not resulting in adoptive transfer of disease to recipient. Bone Marrow Transplant. 1997;20(1):71.PubMedCrossRefGoogle Scholar
  60. 60.
    Cooley HM, et al. Outcome of rheumatoid arthritis and psoriasis following autologous stem cell transplantation for hematologic malignancy. Arthritis Rheum. 1997;40(9):1712–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Snowden JA, et al. Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol. 2004;31(3):482–8.PubMedGoogle Scholar
  62. 62.
    Pasquini MC, et al. Transplantation for autoimmune diseases in north and South America: a report of the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2012;18(10):1471–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Snowden JA, et al. A phase I/II dose escalation study of intensified cyclophosphamide and autologous blood stem cell rescue in severe, active rheumatoid arthritis. Arthritis Rheum. 1999;42(11):2286–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Burt RK, et al. Autologous hematopoietic stem cell transplantation in refractory rheumatoid arthritis: sustained response in two of four patients. Arthritis Rheum. 1999;42(11):2281–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Bingham SJ, et al. Autologous stem cell transplantation for rheumatoid arthritis--interim report of 6 patients. J Rheumatol Suppl. 2001;64:21–4.PubMedGoogle Scholar
  66. 66.
    Roord ST, et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells. Blood. 2008;111(10):5233–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Alexander T, et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood. 2009;113(1):214–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Muraro PA, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–16.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zand MS, et al. Apoptosis and complement-mediated lysis of myeloma cells by polyclonal rabbit antithymocyte globulin. Blood. 2006;107(7):2895–903.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hoyer BF, et al. How to cope with pathogenic long-lived plasma cells in autoimmune diseases. Ann Rheum Dis. 2008;67 Suppl 3:iii87–9.PubMedGoogle Scholar
  71. 71.
    Allam R, Anders HJ. The role of innate immunity in autoimmune tissue injury. Curr Opin Rheumatol. 2008;20(5):538–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Tehlirian CV, et al. High-dose cyclophosphamide without stem cell rescue in scleroderma. Ann Rheum Dis. 2008;67(6):775–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Friedenstein A, Piatetzky-Shapiro I, Petrakova K. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–90.PubMedGoogle Scholar
  74. 74.
    Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMedCrossRefGoogle Scholar
  75. 75.
    Zuk PA, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Fernandez M, et al. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant. 1997;20(4):265–71.PubMedCrossRefGoogle Scholar
  77. 77.
    Purton LE, Mielcarek M, Torok-Storb B. Monocytes are the likely candidate ‘stromal’ cell in G-CSF-mobilized peripheral blood. Bone Marrow Transplant. 1998;21(10):1075–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Huss R, et al. Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells. 2000;18(4):252–60.PubMedCrossRefGoogle Scholar
  79. 79.
    Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Mareschi K, et al. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica. 2001;86(10):1099–100.PubMedGoogle Scholar
  81. 81.
    Lee OK, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75.PubMedCrossRefGoogle Scholar
  82. 82.
    Phuc PV, et al. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim. 2011;47(1):54–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Phuc PV, et al. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank. 2012;13(2):341–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105–10.PubMedCrossRefGoogle Scholar
  85. 85.
    Kestendjieva S, et al. Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int. 2008;32(7):724–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Kita K, et al. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19(4):491–502.PubMedCrossRefGoogle Scholar
  87. 87.
    Covas DT, et al. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res. 2003;36(9):1179–83.PubMedCrossRefGoogle Scholar
  88. 88.
    Hou T, et al. Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A. 2009;15(9):2325–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Rylova YV, et al. Characteristics of Multipotent Mesenchymal Stromal Cells from Human Terminal Placenta. Bull Exp Biol Med. 2015;159(2):253–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Lu. G.H., et al., [Isolation and multipotent differentiation of human decidua basalis-derived mesenchymal stem cells]. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31(2):262–5.PubMedGoogle Scholar
  91. 91.
    Chen YT, et al. Isolation of mesenchymal stem cells from human ligamentum flavum: implicating etiology of ligamentum flavum hypertrophy. Spine (Phila Pa 1976). 2011;36(18):E1193–200.CrossRefGoogle Scholar
  92. 92.
    Savickiene J, et al. Human amniotic fluid mesenchymal stem cells from second- and third-trimester amniocentesis: differentiation potential, molecular signature, and proteome analysis. Stem Cells Int. 2015;2015:319238.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Peng HH, et al. Isolation and differentiation of human mesenchymal stem cells obtained from second trimester amniotic fluid; experiments at Chang Gung Memorial Hospital. Chang Gung Med J. 2007;30(5):402–7.PubMedGoogle Scholar
  94. 94.
    Shaer A, et al. Isolation and characterization of human mesenchymal stromal cells derived from placental decidua basalis; umbilical cord Wharton’s Jelly and amniotic membrane. Pak J Med Sci. 2014;30(5):1022–6.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Pirjali T, et al. Isolation and characterization of human mesenchymal stem cells derived from human umbilical cord Wharton’s Jelly and amniotic membrane. Int J Organ Transplant Med. 2013;4(3):111–6.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Pierdomenico L, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836–42.PubMedCrossRefGoogle Scholar
  97. 97.
    Jo YY, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13(4):767–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Poloni A, et al. Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy. 2008;10(7):690–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Soncini M, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1(4):296–305.PubMedCrossRefGoogle Scholar
  100. 100.
    Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16(11):818–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Musina RA, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145(4):539–43.PubMedCrossRefGoogle Scholar
  102. 102.
    Sani M, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int. 2015;39(5):611–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Patki S, et al. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010;23(2):35–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Qin D, et al. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther. 2014;5(3):69.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fu Y, et al. Human urine-derived stem cells in combination with polycaprolactone/gelatin nanofibrous membranes enhance wound healing by promoting angiogenesis. J Transl Med. 2014;12:274.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–7.Google Scholar
  107. 107.
    Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood. 1991;78(11):2848–53.PubMedGoogle Scholar
  108. 108.
    Yoshimura K, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208(1):64–76.PubMedCrossRefGoogle Scholar
  109. 109.
    Ferraro GA, et al. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem. 2013;114(5):1039–49.PubMedCrossRefGoogle Scholar
  110. 110.
    De Francesco F, et al. Human CD34+/CD90+ ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One. 2009;4(8):e6537.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mark P, et al. Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int. 2013;2013:698076.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Tani C, et al. Treatment with allogenic mesenchymal stromal cells in a murine model of systemic lupus erythematosus. Int J Stem Cells. 2017;10(2):160.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Yang X, et al. Bone marrow-derived mesenchymal stem cells inhibit T follicular helper cell in lupus-prone mice. Lupus. 2018;27(1):49–59.PubMedCrossRefGoogle Scholar
  114. 114.
    He X, et al. Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus. Immunol Res. 2016;64(5-6):1157–67.PubMedCrossRefGoogle Scholar
  115. 115.
    Wei S, et al. Allogeneic adipose-derived stem cells suppress mTORC1 pathway in a murine model of systemic lupus erythematosus. Lupus. 2019;28(2):199–209.PubMedCrossRefGoogle Scholar
  116. 116.
    Choi EW, et al. Transplantation of adipose tissue-derived mesenchymal stem cells prevents the development of lupus dermatitis. Stem Cells Dev. 2015;24(17):2041–51.PubMedCrossRefGoogle Scholar
  117. 117.
    Liu J, et al. Xenogeneic transplantation of human placenta-derived mesenchymal stem cells alleviates renal injury and reduces inflammation in a mouse model of lupus nephritis. Biomed Res Int. 2019;2019:11.Google Scholar
  118. 118.
    Choi EW, et al. Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE. Sci Rep. 2016;6:38237.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Park JS, et al. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease. J Clin Biochem Nutr. 2015;57(3): 192–203PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    de la Portilla F, et al. Local mesenchymal stem cell therapy in experimentally induced colitis in the rat. Int J Stem Cells. 2018;11(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Anderson P, et al. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut. 2013;62(8):1131–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Tang J, et al. Aspirin treatment improved mesenchymal stem cell immunomodulatory properties via the 15d-PGJ2/PPARγ/TGF-β1 pathway. Stem Cells Dev. 2014;23(17):2093–103.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Liao L, et al. Heparin improves BMSC cell therapy: anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics. 2017;7(1):106.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Simovic Markovic B, et al. Pharmacological inhibition of Gal-3 in mesenchymal stem cells enhances their capacity to promote alternative activation of macrophages in dextran sulphate sodium-induced colitis. Stem Cells Int. 2016;2016:2640746.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Robinson A, et al. Mesenchymal stem cells and conditioned medium avert inflammation-induced enteric neuropathy. Neurogastroenterol Motil. 2014;307(11):G1115–29Google Scholar
  126. 126.
    Yu Y, et al. Knockdown of MicroRNA Let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy. Mol Ther. 2017;25(2):480–93.PubMedCrossRefGoogle Scholar
  127. 127.
    Wu T, et al. miR‐21 modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF‐β1 pathway. Stem Cells. 2015;33(11):3281–90.PubMedCrossRefGoogle Scholar
  128. 128.
    Qiu Y, et al. TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol. 2017;10(3):727.PubMedCrossRefGoogle Scholar
  129. 129.
    Molendijk I, et al. Intraluminal injection of mesenchymal stromal cells in spheroids attenuates experimental colitis. J Crohns Colitis. 2016;10(8):953–64.PubMedCrossRefGoogle Scholar
  130. 130.
    Yu Y, Zhao T, Yang D. Cotransfer of regulatory T cells improve the therapeutic effectiveness of mesenchymal stem cells in treating a colitis mouse model. Exp Anim. 2017;66(2):167–76.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Tang Y, et al. Combinatorial intervention with mesenchymal stem cells and granulocyte colony-stimulating factor in a rat model of ulcerative colitis. Dig Dis Sci. 2015;60(7):1948–57.PubMedCrossRefGoogle Scholar
  132. 132.
    Liu X, et al. Over-expression of CXCR4 on mesenchymal stem cells protect against experimental colitis via immunomodulatory functions in impaired tissue. J Mol Histol. 2014;45(2):181–93.PubMedCrossRefGoogle Scholar
  133. 133.
    Tang R-j, et al. Mesenchymal stem cells-regulated Treg cells suppress colitis-associated colorectal cancer. Stem Cell Res Ther. 2015;6(1):71.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Liu S, et al. Efficacy of mesenchymal stem cells on systemic lupus erythematosus: a meta-analysis. Beijing Da Xue Xue Bao Yi Xue Ban. 2018;50(6):1014–21.PubMedGoogle Scholar
  135. 135.
    Carrion F, et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus. 2010;19(3):317–22.PubMedCrossRefGoogle Scholar
  136. 136.
    Gu F, et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol. 2014;33(11):1611–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Li X, et al. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 2013;48(4):544–50.CrossRefGoogle Scholar
  138. 138.
    Liang J, et al. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler J. 2009;15(5):644–6.CrossRefGoogle Scholar
  139. 139.
    Gu Z, et al. Endoplasmic reticulum stress participates in the progress of senescence of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cell Tissue Res. 2015;361(2):497–508.PubMedCrossRefGoogle Scholar
  140. 140.
    Li X, et al. Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev. 2012;21(13):2387–94.PubMedCrossRefGoogle Scholar
  141. 141.
    Wang D, et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther. 2014;16(2):R79.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Wang D, et al. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 2013;22(12):2267–77.PubMedCrossRefGoogle Scholar
  143. 143.
    Barbado J, et al. Therapeutic potential of allogeneic mesenchymal stromal cells transplantation for lupus nephritis. Lupus. 2018;27(13):2161–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380(9853):1590–605.PubMedCrossRefGoogle Scholar
  145. 145.
    Garcia-Olmo D, et al. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.PubMedCrossRefGoogle Scholar
  146. 146.
    Mannon PJ. Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn’s disease. Expert Opin Biol Ther. 2011;11(9):1249–56.PubMedCrossRefGoogle Scholar
  147. 147.
    Lightner AL, et al. A systematic review and meta-analysis of mesenchymal stem cell injections for the treatment of perianal Crohn’s disease: progress made and future directions. Dis Colon Rectum. 2018;61(5):629–40.PubMedCrossRefGoogle Scholar
  148. 148.
    Garcia-Olmo D, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52(1):79–86.CrossRefGoogle Scholar
  149. 149.
    Ciccocioppo R, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60(6):788–98.CrossRefGoogle Scholar
  150. 150.
    Guadalajara H, et al. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. Int J Colorectal Dis. 2012;27(5):595–600.PubMedCrossRefGoogle Scholar
  151. 151.
    Cho YB, et al. Autologous adipose tissue-derived stem cells for the treatment of Crohn’s fistula: a phase I clinical study. Cell Transplant. 2013;22(2):279–85.CrossRefGoogle Scholar
  152. 152.
    Lee WY, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells. 2013;31(11):2575–81.CrossRefGoogle Scholar
  153. 153.
    de la Portilla F, et al. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis. 2013;28(3):313–23.CrossRefGoogle Scholar
  154. 154.
    Ciccocioppo R, et al. Long-term follow-up of crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc. 2015;90(6):747–55.PubMedCrossRefGoogle Scholar
  155. 155.
    Cho YB, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med. 2015;4(5):532–7.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Garcia-Olmo D, et al. Recurrent anal fistulae: limited surgery supported by stem cells. World J Gastroenterol. 2015;21(11):3330–6.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Molendijk I, et al. Allogeneic bone marrow-derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2015;149(4):918–27.. e6CrossRefGoogle Scholar
  158. 158.
    Zhang J, et al. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver. 2018;12(1):73.CrossRefGoogle Scholar
  159. 159.
    Mohyeddin Bonab M, et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol. 2007;4(1):50–7.PubMedGoogle Scholar
  160. 160.
    Yamout B, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1-2):185–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Karussis D, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Christopeit M, et al. Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L. Leukemia. 2008;22(5):1062.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Keyszer G, et al. Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum. 2011;63(8):2540–2.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Scuderi N, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant. 2013;22(5):779–95.PubMedCrossRefGoogle Scholar
  165. 165.
    Onesti MG, et al. Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells. Stem Cells Int. 2016;2016:2416192.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Guillaume-Jugnot P, et al. State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients. Curr Res Transl Med. 2016;64(1):35–42.PubMedCrossRefGoogle Scholar
  167. 167.
    Daumas A, et al. Long-term follow-up after autologous adipose-derived stromal vascular fraction injection into fingers in systemic sclerosis patients. Curr Res Transl Med. 2017;65(1):40–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stem Cell InstituteUniversity of Science, VNU-HCMHo Chi Minh CityVietnam
  2. 2.Laboratory of Stem Cell Research and ApplicationUniversity of Science, VNU-HCMHo Chi Minh CityVietnam

Personalised recommendations