Skip to main content

Chickpea (Cicer arietinum L.) Cytogenetics, Genetic Diversity and Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Legumes

Abstract

Climate change, depleting natural resources, declining arable land and sky-high population represent the main obstacles to the attainment of global food security. Therefore, to make a significant breakthrough in the food production and to combat global food insecurity, sustainable intensification of the agricultural production through low-input agriculture and development of cultivar with improved yield and adaptability is required. By traditional and modern plant breeding methods, breeding of pulses, cereals, and other important food crops, especially chickpea, can be accomplished by exploiting available genetic diversity. Chickpea and other pulse crops are important foods in many nations and play a vital role in the diet of malnourished populations world wide. Globally, chickpea is mainly grown in developing countries, accounting for ~97% of world area and 96% of world production. At present the average global yield of chickpea is 0.9 mt/ha, very low comparedto its estimated potential of 6 mt/ha under favorable growthconditions. The main constraints that limit desired goals of chick peaproductivity include low genetic variability, low and unstable yield and low resistance to biotic and abiotic stresses. Chickpea being a self-pollinated crop harbors low genetic variability. Mutation breeding is the logical tool to create variability in a crop species in a very short span of time, as compared to breeding methods. This chapter cover sorigin, classification, cytogenetics, germplasm and breeding methods for chickpea improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasim M, Day S, Rezaei F et al (2011) In vitro shoot regeneration from preconditioned explants of chickpea (Cicer arietinum L.) cv. Gokce. Afr J Biotech 10(11):2020–2023

    CAS  Google Scholar 

  • Abbo S, Miller TE, Reader SM et al (1994) Detection of ribosomal DNA sites in lentil and chickpea by fluorescent in situ hybridization. Genome 37:713–716

    Article  CAS  PubMed  Google Scholar 

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Abdollahi MR, Rashidi S (2018) Production and conversion of haploid embryos in chickpea (Cicerarietinum L.) anther cultures using high 2, 4-D and silver nitrate containing media. Plant Cell Tiss Organ Cult 133(1):39–49

    Article  CAS  Google Scholar 

  • Abu JO, Duodu KG, Minnaar A (2006) Effect of γ-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chem 95:386–393

    Article  CAS  Google Scholar 

  • Adamu AK, Aliyu H (2007) Morphological effects of sodium azide on tomato (Lycopersicon esculentum Mill). Sci World J 2(4):9–12

    Google Scholar 

  • Agarwal G, Jhanwar S, Priya P et al (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLOS One 7:e52443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlawat IP, Gangaiah B, Zahid MA (2007) Nutrient management in chickpea. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, Oxon, UK, pp 213–232

    Chapter  Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations -a new paradigm in plant breeding. Euphy 118:167–173

    CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation derived varieties. Euphy 135:187–204

    Article  Google Scholar 

  • Ahmad F (1989) The chromosomal architecture of Cicer arietinum Alef. a wild relative of chickpea. Cytologia 54:753–757

    Article  Google Scholar 

  • Ahmad F (2000) A comparative study of chromosome morphology among the nine annual species of Cicer L. Cytobios 101:37–53

    CAS  PubMed  Google Scholar 

  • Ahmad S, Godward MBE (1980) Cytological studies on the cultivars of Cicer arietinum (L.) from Pakistan. Caryol 33:55–68

    Article  Google Scholar 

  • Ahmad F, Hymowitz T (1993) The fine structure of chickpea (Cicer arietinum L.) chromosomes as revealed by pachytene analysis. Theor Appl Genet 86:637–641

    Article  CAS  PubMed  Google Scholar 

  • Ahmad B, Raina A, Naikoo MI, Khan S (2019a) Role of methyl jasmonates in salt stress tolerance in crop plants. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Elsevier, Duxford, pp. 371–384. https://doi.org/10.1016/B978-0-12-816451-8.00023-X

  • Ahmad B, Raina A, Khan S (2019b) Biotic and abiotic stresses, impact on plants and their response. In: Wani SH (ed) Disease resistance in crop plants. https://doi.org/10.1007/978-3-030-20728-1_1

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Al-Qurainy F, Khan S (2009) Mutagenic effects of sodium azide and its application in crop improvement. World Appl Sci J 6(12):1589–1601

    CAS  Google Scholar 

  • Altaf N, Ahmad MS (1986) Plant regeneration and propagation of chickpea (Cicer arietinum L.) through tissue-culture techniques. In: Proceedings of the symposium on nuclear techniques and in vitro culture for plant improvement, August 1985. International Atomic Energy Agency, Vienna, pp 407–417

    Google Scholar 

  • Altaf N, Iqbal J, Salih AM (1999) Tissue culture of microsperma lentis (Lens culinaris Medik) cv. Massoor-85. Pak J Bot 31(2):283–292

    Google Scholar 

  • Amin R, Laskar RA, Khursheed S et al (2016) Genetic sensitivity towards mms mutagenesis assessed through in vitro growth and cytological test in Nigella sativa L. Life Sci Int Res J 3:1–9

    Google Scholar 

  • Amin R, Wani MR, Raina A (2019) Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan J Biol Sci 12(1):23–33

    Google Scholar 

  • Amssa M, De Buyser J, Henry Y (1980) Origin of diploid plants obtained by in vitro culture of anthers of young wheat (Triticum aestivum L.). Cr Acad Sci D Nat 290:1095–1097

    CAS  Google Scholar 

  • Anuradha C, Gaur PM, Pande S et al (2011) Mapping QTL for resistance to botrytis grey mould in chickpea. Euphy 182:1–9

    Article  CAS  Google Scholar 

  • Archak S, Tyagi RK, Harer PN et al (2016) Characterization of chickpea germplasm conserved in the Indian National Genebank and development of a core set using qualitative and quantitative trait data. Crop J 4:417–424

    Article  Google Scholar 

  • Arora A, Chawla HS (2005) Organogenic plant regeneration via callus induction in chickpea (Cicerarietinum). Role of genotypes, growth regulators and explants. Indian J Biotech 4:251–256

    CAS  Google Scholar 

  • Aryamanesh N, Nelson MN, Yan G et al (2010) Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphy 173:307–319

    Article  Google Scholar 

  • Asharani BM (2009) Development of transgenic chickpea (Cicer arietinum L.) lines resistant to Helicoverpaarmigera (F.). PhD thesis, University of Agricultural Sciences GKVK, Bangalore

    Google Scholar 

  • Attri H, Jamwal BS, Kour A et al (2018) Evaluation of chickpea (Cicer arietinum L.) F4 derived F5 MAGIC lines for seed yield and its component traits. Chem Sci Rev Lett 7:599–607

    Google Scholar 

  • Auckland AK, Van der Maesen LJG (1980) Chickpea. In: Fehr WR, Hadely HH (eds) Hybridization of crop plants. American Society of Agronomy, Madison, pp 249–259

    Google Scholar 

  • Auerbach C (1965) Past achievements and future task of research in chemical mutagenesis. In: Geerts SJ (ed) Genetics today. Pergamon Press, Oxford, pp 275–284

    Google Scholar 

  • Badr A, Ahmed HIS, Hamouda M et al (2014) Variation in growth, yield and molecular genetic diversity of M2 plants of cowpea following exposure to gamma radiation. Life Sci J 11:10–19

    Google Scholar 

  • Bahl PN, Gowda CLL (1975) Pod setting in crosses of Bengal gram. Indian J Genet 35:13–16

    Google Scholar 

  • Barna KS, Wakhlu AK (1995) Modified single node culture method a new micropropagation method for chickpea. In Vitro Cell Dev Biol Plant 31:150–152

    Article  Google Scholar 

  • Barve DM, Mehta AR (1993) Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell Tiss Organ Cult 35:237–244

    Article  Google Scholar 

  • Basu PS, Ali M, Chaturvedi SK (2009) Terminal heat stress adversely affects chickpea productivity in northern India – strategies to improve thermo-tolerance in the crop under climate change. In: Panigrahy S, Shankar SR, Parihar JS (eds) W3 Workshop proceedings: impact of climate change on agriculture. ISPRS Archives, Ahmedabad, pp 189–193

    Google Scholar 

  • Beckmann JS, Soller M (1990) Towards a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Nat Biotechnol 8:930–932

    Article  CAS  Google Scholar 

  • Bejiga G, Tessema T (1981) Identification on the optimum time of emasculation and pollination to increase percentage of hybrid seed set in chickpea. J Agric Sci 3:129–134

    Google Scholar 

  • Bennett J (1994) DNA-based techniques for control of rice insects and diseases. In: Teng PS, Heong KL, Moody K (eds) Transformation, gene tagging and DNA fingerprinting. Rice pest science and management. IRRI, Los Baños, Philippines, pp 147–172

    Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker assisted recurrent selection: a simulation appraisal. Crop Sci 46:614–621

    Article  Google Scholar 

  • Brock RD (1965) Induced mutations affecting quantitative characters. Rad Bot 5:451–464

    Article  Google Scholar 

  • Brock RD (1977) Prospects and perspectives in mutation breeding. In: Muhammed A, Askel R, von Borstel RC (eds) Genetic diversity in plants. Plenum Press, New York, pp 117–132

    Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Sci 325(5941):714–718

    Article  CAS  Google Scholar 

  • Byth DE, Green JM, Hawtin GC (1980) ICRISAT/ICARDA chickpea breeding strategies. In: Proceedings of the international workshop on chickpea improvement. ICRISAT, Hyderabad, pp 11–27

    Google Scholar 

  • Carranza JM (1965) Wilt of chickpea (Cicer arietinum) caused by B. cinerea. Rev Facul Agron, Univ Nac de la Plata 41:135–138

    Google Scholar 

  • Castro P, Rubio J, Madrid E et al (2015) Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J Agric Sci 153:56–67

    Article  CAS  Google Scholar 

  • Celik O, Atak C (2017) Applications of ionizing radiation in mutation breeding. In: New insights on gamma rays. InTech, London, UK. https://doi.org/10.5772/66925

    Google Scholar 

  • Chandra S, Buhariwalla HK, Kashiwagi J et al (2004) Identifying QTL-linked markers in marker-deficient crops. In: Fisher T (ed) Proceedings of the 4th international crop science congress. Brisbane, Australia, Regional Institute Ltd, Gosford, NSW, Australia, pp 235–238

    Google Scholar 

  • Chhun T, Taketa S, Tsurumi S et al (2003) Interaction between two auxin resistant mutants and their effects on lateral root formation in rice Oryza sativa (L.). J Exp Bot (393):2701–2708

    Google Scholar 

  • Choudhary S, Gaur R, Gupta S, Bhatia S (2012) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury KA, Sarswat KS, Hasan SN et al (1970) 4000–3500 years old barley, rye and pulses from Atranji Khera. Sci Cult 37:531–533

    Google Scholar 

  • Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27(1):86–93

    Article  CAS  Google Scholar 

  • Coolhaas C (1952) Large-scale use of F1 hybrids in “Vorstenlanden” tobacco. Euphy 1:3–9

    Article  Google Scholar 

  • Croser JS (2002) Haploid and zygotic embryogenesis in chickpea (Cicer arietinum L.). In: PhD Thesis. University of Melbourne, Melbourne

    Google Scholar 

  • Croser JS, Lülsdorf MM, Davies PA et al (2006) Toward doubled-haploid production in the Fabaceae: progress, constraints and opportunities. Crit Rev Plant Sci 25:139–157

    Article  Google Scholar 

  • Custers JBM, Cordewener JHG, Nöllen Y et al (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271

    Article  CAS  PubMed  Google Scholar 

  • De Candolle A (1883) Origine des plantes cultivees. Paris, pp:208–260

    Google Scholar 

  • De Vries H (1901) Die mutation theorie. Viet and Co, Leipzig

    Google Scholar 

  • Deka AC, Kalita MC, Baruah A (1999) Micro propagation of a potent herbal medicinal plant, Withania somnifera. Envir Ecol 17:594–596

    Google Scholar 

  • Delaitre C, Ochatt SJ, Deleury E (2001) Electroporation modulates the embryogenic responses of asparagus (Asparagus officinalis L.) microspores. Protoplasma 216:39–46

    Article  CAS  PubMed  Google Scholar 

  • Deokar AA, Ramsay L, Sharpe AG et al (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics (1):708

    Google Scholar 

  • Devasirvatham V, Tan D (2018) Impact of high temperature and drought stresses on chickpea production. Agron 8(8):2–9

    Google Scholar 

  • Dua RP, Chaturvedi SK, Shiv S (2001) Reference varieties of chickpea for IPR regime. Indian Institute of Pulses Research, Kanpur duration genotypes in chickpea (Cicer arietinum L.). Legum Res 21:121–124

    Google Scholar 

  • Duncan EJ, Heberle E (1976) Effect of temperature shock on nuclear phenomena in microspores of Nicotiana tabacum and consequently on plantlet production. Protoplasma 90:173–177

    Article  Google Scholar 

  • Eapen S, George L (1990) Ontogeny of somatic embryos of Vigna mungo L. Ann Bot 66:219–222

    Article  Google Scholar 

  • Encheva J (2009) Creating sunflower mutant lines (Helianthus annuus L.) using induced mutagenesis. Bulgar J Agric Sci 15:109–118

    Google Scholar 

  • Erskine W, Chandra S, Chaudhury M et al (1998) A bottleneck in lentil: widening the genetic base in South Asia. Euphy 101:207–211

    Article  Google Scholar 

  • Fan JB, Oliphant A, Shen R et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014). http://www.fao.org/faostat/en/#data/QC

  • FAO (2016) FAOSTAT Statistical Database of the United Nation Food and Agriculture Organization (FAO) Statistical Division., Rome

    Google Scholar 

  • FAO (2018) FAOSTAT Production share of chickpea by region

    Google Scholar 

  • Galasso I, Frediani M, Maggiani M et al (1996) Chromatin characterization by banding techniques, in situ hybridization and nuclear DNA content in Cicer L (Leguminosae). Genome 39:258–265

    Article  CAS  PubMed  Google Scholar 

  • Ganesh K, Ganesan K, Jayabalan M (2008) Somatic embryogenesis and plant regeneration in Ricinus communis. Biol Plant 52:17–25

    Article  Google Scholar 

  • Ganger CS, Blakeslee AE (1927) Chromosome and gene mutations in Datura following exposure to radium rays. Proc Nat Acad Sci 10:75–70

    Article  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaul H (1964) Mutations in plant breeding. Rad Bot 4:155–232

    Article  Google Scholar 

  • Gaur PM, Gour VK (2002) A gene producing one to nine flowers per flowering node in chickpea. Euphy 128:231–235

    Article  CAS  Google Scholar 

  • Gaur PM, Gowda CLL, Knights EJ et al (2007) Breeding achievements. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea breeding and management. CABI, Wallingford, pp 391–416

    Chapter  Google Scholar 

  • Gaur PM, Gour VK, Srinivasan S (2008) An induced brachytic mutant of chickpea and its possible use in ideotype breeding. Euphy 159:35–41

    Article  Google Scholar 

  • Gaur PM, Mallikarjuna N, Knights T et al (2010) Gene introgression in grain legumes. In: Gupta S, Ali M, Singh BB (eds) Grain legumes: genetic improvement, management and trade. Indian Society of Pulses Research and Development, Kanpur, pp 1–17

    Google Scholar 

  • Gaur RA, Azam SA, Jeena GA et al (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res (5):357–373

    Google Scholar 

  • Gaur R, Jeena G, Shah N et al (2015) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur PM, Samineni S, Tripathi S et al (2016) Allelic relationships of flowering time genes in chickpea. Euphy 203:295–308

    Article  CAS  Google Scholar 

  • Geetha N, Venkatachalam P, Lakshmisita G (1999) Agrobacterium mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development to transgenic plants via direct organogenesis. Plant Biotech 16:213–218

    Article  CAS  Google Scholar 

  • Ghanti SK, Sujata KG, Rao MS, Kishor PK (2010) Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. Biol Plant 54(1):121–125

    Article  CAS  Google Scholar 

  • Gharyl PK, Maheswari SC (1982) In vitro differentiation plantlets from tissues culture of Albizzialebbeck L. Plant Cell Tiss Organ Cult 2:49–53

    Article  Google Scholar 

  • Gil J, Cubero JL (1993) Inheritance of seed coat thickness in chickpea (Cicer arietinum L.) and its evolutionary implications. Plant Breed 111:257–260

    Article  Google Scholar 

  • Girija S, Ganapathi A, Ananthakrishnan G (2000) Somatic embryogenesis in Vigna radiata (L.) Wilczek. Indian J Exp Biol 38:1241–1244

    CAS  PubMed  Google Scholar 

  • Glaszmann JC, Kilian G, Upadhyaya HD et al (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  CAS  PubMed  Google Scholar 

  • Goodspeed TB (1929) The effects of X–rays and radium on species of genus Nicotiana. J Hered 20:243–259

    Article  Google Scholar 

  • Gortner G, Nenno M, Weising K et al (1998) Chromosomal localization and distribution of simple sequence repeat and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chrom Res 6:97–104

    Article  CAS  PubMed  Google Scholar 

  • Gosal SS, Bajaj YPS (1988) Pollen embryogenesis and chromosomal variations in anther of three food legumes Cicer arietinum, Pisum sativum and Vigna mungo. Sabrao J 20(1):51–58

    Google Scholar 

  • Gottschalk W (1978a) The dependence of the penetrance of mutant genes on environment and genotypic background. Genet 49:21–29

    Google Scholar 

  • Gottschalk W (1978b) Prospects and limits of mutation breeding. Indian Agric 22:65–69

    Google Scholar 

  • Gottschalk W, Wolff G (1983) Induced mutations in plant breeding. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Goyal S, Khan S (2010a) Differential response of single and combined treatment in moist seeds of urdbean. Indian J Bot Res 6:183–188

    Google Scholar 

  • Goyal S, Khan S (2010b) Induced mutagenesis in urdbean (Vigna mungo L. Hepper) a review. Int J Bot 6(3):194–206

    Article  Google Scholar 

  • Grewal RK, Lulsdorf M, Croser J (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28(8):1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Griga M, Kubala KM, Tejk LE (1986) Somatic embryogenesis in Vicia faba L. Plant Cell Tiss Organ Cult 3:319–324

    Google Scholar 

  • Grusak MA, Penna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Ann Rev Plant Phys Plant Mol Biol 50:133–161

    Article  CAS  Google Scholar 

  • Gujaria N, Kumar A, Dauthal P et al (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Nadgir AL, Mascarenhas AF, Jagannathan V (1980) Tissue culture of forest, trees: clonal multiplication of Tectona grandis L. (Teak) by tissue culture. Plant Sci Lett 17:259–268

    Article  CAS  Google Scholar 

  • Gustafson VD, Baenziger PS, Wright MS et al (1995) Isolated wheat microspore culture. Plant Cell Tiss Organ Cult 42:207–213

    Article  Google Scholar 

  • Gustafsson A (1947) Mutations in agricultural plants. Hered 33:1–99

    Google Scholar 

  • Handro W (1981) Mutagenesis and in vitro selection. In: Thorpe TA (ed) Plant tissue culture. Academic, New York, pp 155–179

    Chapter  Google Scholar 

  • Haq MA, Singh KB (1994) Induction of cold tolerance in kabuli chickpea (Cicer arietinum L.) through induced mutations. Mut Breed Newsl 41:6–7

    Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Van Harten AM (1998) Mutation breeding theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Hassan N, Laskar RA, Raina A, Khan S (2018) Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Res Rev J Bot Sci 7(1):19–28

    Google Scholar 

  • Hawtin GC, Singh KB (1980) Kabuli-desi introgression: problems and prospects. In: Green JM, Nene YL, Smithson JB (eds) Proceedings of the international workshop on chickpea improvement. ICRISAT, Hyderabad, pp 51–60

    Google Scholar 

  • Hegde VS (2011) Morphology and genetics of a new found determinate genotype in chickpea. Euphy 182:35–42

    Article  Google Scholar 

  • Hillman GC (1975) The plant remains from Tell Abu Hureya in Syria: a preliminary report. In: Moore AMT (ed) The excavation of Tell Abu Hureya in Syria. Proc prehist soc 41:70–73

    Google Scholar 

  • Hiremath J, Kumar A, Penmetsa RV et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    Article  CAS  Google Scholar 

  • Huda S, Islam R, Bari MA, Asaduzzaman M (2001) Anther culture of chickpea. Int Chickpea Pigeonpea Newsl 8:24–26

    Google Scholar 

  • Huda S, Siddique NA, Khatun N et al (2003) Regeneration of shoot from cotyledon derived callus of chickpea (Cicer arietinum L.). Pak J Biol Sci 6(15):1310–1313

    Article  Google Scholar 

  • Ilbas AI, Eroglu Y, Eroglu HE (2005) Effect of the application of different concentrations of SA for different times on the morphological and cytogenetic characteristics of Barley (Hordeum vulgare L.) seedling. Acta Botan Sin 47:1101–1106

    CAS  Google Scholar 

  • Jaganathan D, Thudi M, Kale S et al (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genom 290:559–571

    Article  CAS  Google Scholar 

  • Jain SM, Sopory SK, Veilleux RE (eds) (1996) In vitro haploid production in higher plants, 5 vol. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea (Cicerarietinum L.). Plant J 74(5):715–729

    Article  CAS  PubMed  Google Scholar 

  • Javed MA, Khatri A, Khan IA et al (2000) Utilization of gamma irradiation for the genetics improvement of oriental mustard (Brassica juncea Coss). Pak J Bot 32:77–83

    Google Scholar 

  • Javed I, Ahsan M, Ahmad HM et al (2016) Role of mutation breeding to improve mungbean (Vigna radiata L. Wilczek) yield: an overview. Nat Sci 14(1):63–77

    Google Scholar 

  • Jhanwar S, Priya P, Garg R et al (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Bikram SG (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Diaz RM, Trapero-Casas A, Cabrera de la Colina J (1989) Races of Fusarium oxysporum f. sp. Cicer isinfecting chickpea in southern Spain. In: Tjamos EC, Beckman CH (eds) Vascular wilt disease of plants. Springer, Berlin, pp 515–520

    Chapter  Google Scholar 

  • Johnson R (2003) Marker-assisted selection. In: Janick J (ed) Plant breeding reviews, Part I long-term selection: maize, vol 24. Wiley, Hoboken, pp 293–309

    Google Scholar 

  • Joung JK, Sander JD (2013) Innovation Talens: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.)-a review. Brit J Nutr 108(1):S11–S26. https://doi.org/10.1017/S0007114512000797

    Article  CAS  PubMed  Google Scholar 

  • Kadiri A, Halfaoui Y, Bouabdallah L, Ighilhariz Z (2014) Chickpea (Cicer arietinum L.) in vitro micropropagation. Türk Tarım ve Doğa Bilimleri Dergisi 1:1304–1309

    Google Scholar 

  • Kalapchieva S, Tomlekova NB (2016) Sensitivity of two garden pea genotypes to physical and chemical mutagens. J Biosci Biotech 5:167–171

    Google Scholar 

  • Kaur P, Bhalla JK (1998) Regeneration of haploid plants from microspore culture of pigeon pea (Cajanus cajan L.). Indian J Exp Bot 36:736–738

    Google Scholar 

  • Kay DE (1979) Chickpea (Cicer arietinum). In: Crop production digest No. 3, Food legumes. Tropical Products Institute, London, pp 48–71

    Google Scholar 

  • Kebeish R, Deef HE, El-Bialy N (2015) Effect of gamma radiation on growth, oxidative stress, antioxidant system, and alliin producing gene transcripts in Allium sativum. Int J Res Stand Biosci 3:161–174

    Google Scholar 

  • Khajuria YP, Saxena MS, Gaur R et al (2015) Development and integration of genome-wide polymorphic microsatellite markers onto a reference linkage map for constructing a high-density genetic map of chickpea. PLoS ONE 10(5):e0125583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Parveen K, Goyal S (2011) Induced mutations in chickpea-morphological mutants. Front Agric China 5(1):35–39

    Article  Google Scholar 

  • Khanna-Chopra R, Sinha SK (1987) Chickpea: physiological aspects on growth and yield. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 163–189

    Google Scholar 

  • Kharkwal MC (1996) Accomplishments of mutation breeding in crop improvement in India. In: Sachdev MS, Sachdev P, Deb DL (eds) Isotopes and radiations in agriculture and environment research. Indian Society for Nuclear Techniques in Agriculture and Biology. Nuclear Research Laboratory, IARI, New Delhi, pp 196–218

    Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 33–38

    Google Scholar 

  • Khosh-Khui M, Niknejad M (1972) Plant height and width inheritance and their correlation with some of the yield components in chickpea. J Agric Sci 78:37–38

    Article  Google Scholar 

  • Khursheed S, Laskar RA, Raina A et al (2015) Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chrom Sci 18(3-4):47–51

    CAS  Google Scholar 

  • Khursheed S, Raina A, Khan S (2016) Improvement of yield and mineral content in two cultivars of Vicia faba L. through physical and chemical mutagenesis and their character association analysis. Arch Curr Res Int 4(1):1–7

    Article  Google Scholar 

  • Khursheed S, Raina A, Parveen K, Khan S (2017) Induced phenotypic diversity in the mutagenized populations of faba bean using physical and chemical mutagenesis. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2017.03.001

  • Khursheed S, Raina A, Amin R et al (2018a) Quantitative analysis of genetic parameters in the mutagenized population of faba bean (Vicia faba L.). Res Crops 19(2):276–284

    Article  Google Scholar 

  • Khursheed S, Raina A, Laskar RA, Khan S (2018b) Effect of gamma radiation and EMS on mutation rate: their effectiveness and efficiency in faba bean (Vicia faba L.). Caryol 71(4):397–404

    Article  Google Scholar 

  • Khursheed S, Raina A, Khan S (2018c) Physiological response of two cultivars of faba bean using physical and chemical mutagenesis. International Journal of Advance Research in Science and Engineering 7(4):897–905

    Google Scholar 

  • Kilikova S, Šebánek J, Vlašic T (2004) The effect of cytokinins and other plant hormones on the growth of cotyledonary axilars of flax (Linum usitatissimum), sunflower (Helianthus annuus)and pea (Pisumsativum). Plant Soil Envir 50(4):182–187

    Article  Google Scholar 

  • Kim M (1999) The influence of temperature pretreatment on the production of microspore embryos in anther culture of Capsicum annuum L. Kor J Plant Tiss Cult 26:71–76

    Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Meth Mol Biol 236:189–203

    CAS  Google Scholar 

  • Kohlenbach HW (1977) In: Barz Reinhard WE, Zenk MH (eds) Plant tissue culture and its biotechnological application. Springer, Heidelberg, pp 355–366

    Chapter  Google Scholar 

  • Konzak CF (1957) Genetic effects of radiation on higher plants. Quat Rev Biol 32:27–45

    Article  CAS  Google Scholar 

  • Konzak CF, Nilan RA, Wagner J et al (1965) Efficient chemical mutagenesis. Rad Bot 5:49–70

    Google Scholar 

  • Konzak CF, Nilan RA, Kleinhofs A (1977) Artificial mutagenesis as an aid in overcoming genetic vulnerability of crop plants. In: Muhammed A, Aksel R, Von Borstel RC (eds) Genetic diversity in plants. Plenum, New York, pp 163–177

    Google Scholar 

  • Kordi M, Majd A, Valizadeh M et al (2006) A comparative study of chromosome morphology among some genotypes of Cicer arietinum L. Pak J Biol Sci 9:1225–1230

    Article  Google Scholar 

  • Kozgar MI (2012) Studies on the induction of mutation for quantitative traits in chickpea (Cicer arietinum L.). PhD thesis. Aligarh Muslim University, Aligarh

    Google Scholar 

  • Kozgar MI, Wani MR, Tomlekova NB (2014) In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis-exploring novel genes and pathways. Induced mutagenesis in edible crop plants and its impact on human beings. Wageningen Academic Publishers, Dordrecht, pp 167–182

    Chapter  Google Scholar 

  • Krishna MCR (1975) Biochemical studies on bengal gram. J Sci Ind Res 34:266–281

    Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using sanger and second-generation sequencing platforms. Mol Plant 5:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Shukla AK, Singh H et al (2013a) Genotype-independent Agrobacterium mediated transformation of germinated embryo of cotton (Gossypium hirsutum L.). Intl J BioTech Res 3(1):91–90

    CAS  Google Scholar 

  • Kumar S, Thakur P, Kaushal N et al (2013b) Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Arch Agron Soil Sci 59:823–843

    Article  CAS  Google Scholar 

  • Kupicha FK (1977) The delimitation of the tribe Vicieae and the relationships of Cicer L. Bot J Linn Soc 74:131–162

    Article  Google Scholar 

  • Ladizinsky G, Adler A (1976) The origin of chickpea Cicer arietinum L. Euphy 25:211–217

    Article  Google Scholar 

  • Lal S, Singh SN, Lal SB et al (1973) Improvement in gram through pedigree method of breeding. In: Proceedings of the 10th workshop on rabi pulses AICRP (ICAR), Bose Institute. ICAR, New Delhi, pp 70–80

    Google Scholar 

  • Laskar RA, Khan S, Khursheed S et al (2015) Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J Agron 14(3):102–111

    Article  CAS  Google Scholar 

  • Laskar RA, Laskar AA, Raina A et al (2018a) Induced mutation analysis with biochemical and molecular characterization of high yielding lentil mutant lines. Int J Biol Macromol 109:167–179

    Article  CAS  PubMed  Google Scholar 

  • Laskar RA, Wani MR, Raina A et al (2018b) Morphological characterization of gamma rays induced multipodding mutant (mp) in lentil cultivar Pant L 406. Intl J Rad Biol 94(11):1049–1053

    Article  CAS  Google Scholar 

  • Lazzeri PA, Hilderbrand DF, Collins GB (1990) Soybean somatic embryogenesis – effects of hormones and culture manipulations. Plant Cell Tiss Organ Cult 10:197–200

    Article  Google Scholar 

  • Leterme P (2002) Recommendations by health organizations for pulse consumption. British J Nutr 88:239–242

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Mahandjiev A, Kosturkova G, Mihov M (2001) Enrichment of Pisum sativum gene resources through combine use of physical and chemical mutagens. Israel J Plant Sci 49(4):279–284

    Google Scholar 

  • Mallikarjuna BP, Samineni S, Thudi M et al (2017) Molecular mapping of flowering time major genes and QTLs in Chickpea (Cicer arietinum L.). Front Plant Sci 8:1–10

    Article  Google Scholar 

  • Malti, Shivanna KR (1983) Pollen pistil interaction in chickpea. Int Chickpea Newsl 9:10–11

    Google Scholar 

  • Mba C (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3:200–231. https://doi.org/10.3390/agronomy3010200

    Article  Google Scholar 

  • Mercy ST, Kakar SN, Chowdhury JB (1974) Cytological studies in three species of the genus Cicer. Cytologia 39:383–390

    Article  Google Scholar 

  • Micke A (1988a) Genetic improvement of food legumes in developing countries by mutation induction. In: Summerfield RJ (ed) World crops: cool season food legumes. Kluwer Academic, Dordrecht, pp 1031–1047

    Chapter  Google Scholar 

  • Micke A (1988b) Improvement of grain legumes production using induced mutation. An overview. In: Proceedings of a workshop on the improvement of grain legume production using induced mutations. FAO/IAEA Division, Pullman, Washington. International Atomic Energy Agency, Vienna, Austria, pp 1–51

    Google Scholar 

  • Micke A (1995) Radiation mutagenesis for genetic improvement of plants. In: Genetic research and education: current trends and the next fifty years. Indian Society Genet Plant Breed, New Delhi, pp 1129–1142

    Google Scholar 

  • Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Blackwell Publishing Ltd., Oxford, UK, pp 170–190

    Google Scholar 

  • Momin KC, Gonge VS, Dalal SR et al (2012) Radiation induced variability studies in Chrysanthemum under net house. Asian J Hort 7:524–527

    Google Scholar 

  • Moreno MT, Cubero JI (1978) Variation in Cicer arietinum L. Euphy 27:465–485

    Article  Google Scholar 

  • Muehlbauer FJ, Kaiser WJ, Simon CJ (1993) Potential for wild species in cool season food legume breeding. Euphy 73:109–114

    Article  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of genes. Sci 66:84–144

    Article  CAS  Google Scholar 

  • Muñoz LC, Baudoin JP (2002) Improvement of in vitro induction of androgenesis in Phaseolus beans (P. vulgaris L. and P. coccineus L.). Acta Agron 51(4):81–87

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Phys Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F et al (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Elsevier, Duxford, pp.157–168. https://doi.org/10.1016/B978-0-12-816451-8.00009-5

  • Nakagawa H, Annai T, Okabe A et al (2011) Mutation breeding of soybean in Japan. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, pp 55–84

    Google Scholar 

  • Nayak SN, Zhu H, Varghese N et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayyar H, Bains TS, Kumar S (2005) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Envir Exp Bot 54:275–285

    Article  CAS  Google Scholar 

  • Nene YL, Reddy MV (1987) Chickpea diseases and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 233–270

    Google Scholar 

  • Nene YL, Reddy MV, Haware MP et al (1991) Field diagnosis of chickpea diseases and their control. Info Bull No. 28, ICRISAT, Hyderabad, India

    Google Scholar 

  • Ocampo B, Venora G, Errico A et al (1992) Karyotype analysis in the genus Cicer. J Genet Breed 46:229–240

    Google Scholar 

  • Ochatt SJ, Atif RM, Patat-Ochatt E et al (2010) Competence versus recalcitrance for in vitro regeneration. World J Agric Sci 6(5):630–634

    Google Scholar 

  • Ohri D, Pal M (1991) The origin of chickpea (Cicer arietinum L.): karyotype and nuclear DNA amount. Hered 66:367–372

    Article  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N et al (2015) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16. https://doi.org/10.1080/13102818

    Article  Google Scholar 

  • Ozias AP, Anderson WF, Halbrook AC (1992) Somatic embryogenesis in Arachis hypogaea L – effect of genotype and comparison. Plant Sci 83:103–111

    Article  Google Scholar 

  • Pande S, Stevenson P, Rao JN et al (2005) Reviving chickpea production in Nepal through integrated crop management, with emphasis on botrytis gray mold. Plant Dis 89:1252–1262

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Dalal V, Singh AK et al (2009) Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics 10:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen K (2006) Mutation studies with early generation selection for polygenic variability in chickpea (Cicer arietinum L.). PhD thesis, Aligarh Muslim University, Aligarh, India

    Google Scholar 

  • Pattnaik S, Chand PK (1996) In vitro propagation of the medicinal herbs Ocimum americanum L. syn. O. canum Sims. (hoary basil) and Ocimum sanctum L. (holy basil). Plant Cell Rep 15:846–850

    Article  CAS  PubMed  Google Scholar 

  • Phillips GC, Collins GB (1979) In vitro tissue culture of selected legumes and plant regeneration from callus culture of red clover. Crop Sci 19:59–64

    Article  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES et al (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Nat Acad Sci 108:6893–6898

    Article  PubMed  Google Scholar 

  • Pundir RPS, Mengesha MH (1995) Cross compatibility between chickpea and its wild relative Cicer echinospermum Davis. Euphy 83:241–245

    Article  Google Scholar 

  • Pundir RPS, Reddy GU (1998) Two new traits-open flower and small leaf in chickpea (Cicer arietinum L.). Euphy 102:357–361

    Article  Google Scholar 

  • Rahman MA, Bahl PN (1985) Comparison of single seed descent, mass selection and random bulk methods in chickpea. Indian J Genet 45:186–193

    Google Scholar 

  • Raina A, Laskar RA, Khursheed S et al (2016) Role of mutation breeding in crop improvement-past, present and future. Asian Res J Agric 2(2):1–3

    Article  Google Scholar 

  • Raina A, Laskar RA, Khursheed S et al (2017) Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Let Nat Sci 61:14–22

    Google Scholar 

  • Raina A, Khursheed S, Khan S (2018a) Optimisation of mutagen doses for gamma rays and sodium azide in cowpea genotypes. Trends Biosci 11(13):2386–2389

    Google Scholar 

  • Raina A, Laskar RK, Jahan R et al (2018b) Mutation breeding for crop improvement. In: Ansari MW, Kumar S, Babeeta CK, Wattal RK (eds) Introduction to challenges and strategies to improve crop productivity in changing environment. Enriched Publications. PVT. lTD, New Delhi, pp 303–317

    Google Scholar 

  • Rajput MA, Sarwar G, Siddiqui KA (2001) Development of high yielding mutants in lentil. Mut Breed Newslet 45:35

    Google Scholar 

  • Ramanujam S (1976) Chickpea. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 157–159

    Google Scholar 

  • Rao BG, Chopra VL (1989) Regeneration in chickpea (Cicer arietinum L.) through somatic embryogenesis. J Plant Physiol 134(5):637–638

    Article  Google Scholar 

  • Rech EL, Ochatt SJ, Chand PK et al (1987) Electro enhancement of division of plant protoplast-derived cells. Protoplasma 141:169–176

    Article  Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Roorkiwal M, Sawargaonkar SL, Chitikineni A et al (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6(2)

    Google Scholar 

  • Ruperao P, Chan CKK, Azam S et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotech J (6):778–786

    Google Scholar 

  • Sagare AP, Suhasini K, Krishnamurthy KV (1993) Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep 12:652–655

    Article  CAS  PubMed  Google Scholar 

  • Saleem MY, Mukhtar Z, Cheema AA et al (2005) Induced mutation and in vitro techniques as a method to induce salt tolerance in Basmati rice (Oryza sativa L.). Int J Env Sci Tech 2:141–145

    Article  CAS  Google Scholar 

  • Salimath PM, Bahl PN, Mehra RB (1984) Genetic diversity in chickpea (Cicer arietinum L.). Pflanzenzucht Z 92:52–60

    Google Scholar 

  • Salimath PM, Toker C, Sandhu JS et al (2007) Conventional breeding methods. In: Yadav SS (ed) Chickpea breeding and management, pp 369–390

    Google Scholar 

  • Salnikova TV (1995) Achievements of chemical mutagenesis in the breeding of cultivated plants in the USSR. In: Genetic research and education: current trends and the next fifty years, vol. III, New Delhi. pp 1196–1209

    Google Scholar 

  • Sanchez-Mata MC, Penuela-Teruel MJ, Camara-Hurtado M et al (1998) Determination of mono, di, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. J Agric Food Chem 46:3648–3652

    Article  CAS  Google Scholar 

  • Sandhu JS, Gupta SK, Singh G et al (2006) Interspecific hybridization between Cicer arietinum L. and Cicer pinnatifidum Jaub. et. Spach for improvement of yield and other traits. In: 4th international food legumes research conference. Indian Society Genet Plant Breed, New Delhi

    Google Scholar 

  • Sarmah BK, Moore A, Tate W et al (2004) Transgenic chickpea seeds expressing high level of a beanα-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Saxena HP, Raina AK (1970) Abruchid resistant strain of Bengal gram. Curr Sci 39:189–190

    Google Scholar 

  • Saxena RK, Cui X, Thakur V et al (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genomics 11:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Penmetsa RV, Upadhyaya HD et al (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962

    Article  CAS  PubMed  Google Scholar 

  • Sehgal CB, Abbas SN (1994) Somatic embryogenesis and plant regeneration from hypocotyl tissue of Trachyspermum ammi (L.) sprague. Phytomorph 44:265–271

    Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intra-specific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 112:1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Shahzad A, Sidique AS (2000) In vitro organogenesis in Ocimum sanctum L. -a multipurpose herb. Phytomorph 50:27–35

    Google Scholar 

  • Sharma B (1985) Chemical mutagens. In: Advances in chromosome and cell genetics. IBH Publishing, New Delhi, pp 255–283

    Google Scholar 

  • Sharma PC, Winter P, Bünger T et al (1995) Abundance and polymorphism of di-, tri- and tetra-nucleotide tandem repeats in chickpea (Cicer arietinum L.). Theor Appl Genet 90:90–96

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety and Social consequences of the deployment of Bt transgenic plants. Ann Rev Entom 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CAB International and FAO, Rome

    Book  Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    Article  CAS  Google Scholar 

  • Sinclair TR, Vadez V (2012) The future of grain legumes in cropping systems. Crop Past 63:501–512

    Article  Google Scholar 

  • Sindhu JS, Lal SB, Singh RP (1981) Studies on the factors determining crossing success in chickpea (Cicer arietinum). Pulse Crops Newsl 1:21–22

    Google Scholar 

  • Sing KB, Malhotra RS, etal HHM (1994) Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stress. Euphy 73:137–149

    Article  Google Scholar 

  • Singh U (1985) Nutritional quality of chickpea (Cicer arietinum L.): current status and future research needs. Plant Foods Human Nutr 35:339–351

    Article  Google Scholar 

  • Singh KB (1987) Chickpea breeding. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 127–162

    Google Scholar 

  • Singh KB (1990) Patterns of resistance and susceptibility to races of Ascochyta rabiei among germplasm accessions and breeding lines of chickpea. Plant Dis 74:127–129

    Article  Google Scholar 

  • Singh KB Auckland AK (1975) Chickpea breeding at ICRISAT. In: Proceedings of the international workshop on grain legumes. ICRISAT, Hyderabad, pp 3–17

    Google Scholar 

  • Singh KB, Ocampo B (1993) Interspecific hybridization in annual Cicer species. J Genet Breed 47:199–204

    Google Scholar 

  • Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Article  Google Scholar 

  • Singh KB, Reddy MV (1991) Advances in disease resistance breeding in chickpea. Adv Agron 45:191–222

    Article  Google Scholar 

  • Singh G, Sharma YR (2002) Fungal diseases of pulses. In: Gupta VK, Paul YS (eds) Diseases of field crops. Indus Publishing, New Delhi, pp 155–192

    Google Scholar 

  • Singh KB, Singh O (1997) Prospects of creating higher yield potential in chickpea. In: Asthana AN, Ali M (eds) Recent advances in pulses research. Indian Society of Pulses Research and Development, IIPR, Kanpur

    Google Scholar 

  • Singh I, Waldia RS (1994) Comparison of selection methods in chickpea under late sown condition. Crop Res Hissar 8:508–511

    Google Scholar 

  • Singh KB, Omar M, Saxena MC, Johansen C (1997a) Screening for drought resistance in spring chickpea in the Mediterranean region. J Agron Crop Sci 178:227–235

    Article  Google Scholar 

  • Singh VP, Chaturvedi SN, Srivastava A (1997b) Genetic improvement in pulse crops through mutation breeding. In: Bahar AS, Khan S (eds) Plant breeding advances and in vitro culture. CBS Publishing, New Delhi, pp 25–72

    Google Scholar 

  • Singh S, Gumber RK, Joshi N et al (2005) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Article  Google Scholar 

  • Singh M, Khan Z, Kumar K et al (2012a) Sources of resistance to Fusarium wilt and root knot nematode in indigenous chickpea germplasm. Plant Genet Res 10(3):258–260

    Article  Google Scholar 

  • Singh RP, Singh I, Singh S et al (2012b) Assessment of genetic diversity among interspecific derivatives in chickpea. J Food Legum 25:150–152

    Google Scholar 

  • Singh I, Singh RP, Singh S et al (2012c) Introgression of productivity genes from wild to cultivated Cicer. In: Sandhu SK, Sidhu N, Rang A (eds) International conference on sustainable agriculture for food and livelihood security, Crop improve 39 (Special issue), Crop Improvement Society of India, Ludhiana, pp 155–156

    Google Scholar 

  • Singh AK, Rana MK, Singh S et al (2014a) CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotech 23:175–183

    Article  CAS  Google Scholar 

  • Singh M, Bisht IS, Dutta M et al (2014b) Characterization and evaluation of wild annual Cicer species for agro-morphological traits and major biotic stresses under northwestern Indian conditions. Crop Sci 54:229–239

    Article  Google Scholar 

  • Singh S, Singh I, Kapoor K et al (2014c) Chickpea. In: Gaur PM, Chaturvedi SK, Singh NP et al (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 51–73

    Google Scholar 

  • Smartt J (1976) Comparative evolution of pulse crops. Euphy 25:139–143

    Article  Google Scholar 

  • Sounder RV, Tejavathi DH, Nijalingappa BHM (1989) Shoot tip culture in Dolichos biflorus L. Curr Sci 58:1385–1388

    Google Scholar 

  • Srinivasan A, Saxena NP, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crops Res 60:209–222

    Article  Google Scholar 

  • Stadler LJ (1928) Mutations in barley induced by x-rays and radium. Sci 68:186–187

    Article  CAS  Google Scholar 

  • Staginnus C, Winter P, Desel C et al (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39:1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–145

    Article  Google Scholar 

  • Sudharshan C, Aboel MN, Hussain J (2000) in vitro propagation of Ziziphus mauritianscultivar Umran by shoot tip ad nodal multiplication. Curr Sci 80:290–292

    Google Scholar 

  • Summerfield RJ, Hadley P, Roberts EH et al (1984) Sensitivity of chickpeas (Cicer arietinum) to hot temperatures during the reproductive period. Exp Agric 20:77–93

    Article  Google Scholar 

  • Tanno K, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L. early finds from Tell el-Kerkh, north-west Syria, late 10th millennium B.P. Veget Hist Archaeobot15:197–204

    Google Scholar 

  • Tantray AY, Raina A, Khursheed S et al (2017) Chemical mutagen affects pollination and locule formation in capsules of black cumin (Nigella sativa L.). Int J Agric Sci 8(1):108–117

    Google Scholar 

  • Tayyar RI, Lukaszewski AJ, Waines JG (1994) Chromosome banding pattern in the annual species of Cicer. Genome 37:656–663

    Article  CAS  PubMed  Google Scholar 

  • Tekeoglu M, Tullu A, Kaiser WJ et al (2000) Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop Sci 40:1247–1251

    Article  CAS  Google Scholar 

  • Thimmaiah SK, Mahadevu P, Srinivasappa KN et al (1998) Effect of gamma radiation on seed germination and seedling vigour in cowpea [Vigna unguiculata (L.) Walp.]. J Nucl Agric Biol 27:142–145

    Google Scholar 

  • Thomas WTB (2003) Prospects for molecular breeding of barley. Ann Appl Biol 142:1–12

    Article  CAS  Google Scholar 

  • Thudi M, Bohra A, Nayak SN et al (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoSOne 6:e27275

    Article  CAS  Google Scholar 

  • Thudi M, Li Y, Jackson SA et al (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genom 11:3–11

    Article  CAS  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A et al (2014) Genetic dissection of drought and heattolerance in chickpea through genone-wide and candidate gene-based association mapping approaches. PLoS One. https://doi.org/10.1371/journal.pone.0096758

  • Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet Res Crop Evol 56:7–12

    Article  Google Scholar 

  • Toker C, Cagirgan MI (2004) Spectrum and frequency of induced mutations in chickpea. Int Chickpea Pigeonpea Newslet 11:8–10

    Google Scholar 

  • Toker C, Canci H (2006) Selection for drought and heat resistance in chickpea under terminal drought conditions. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture, 4th international food legumes research conference. Indian Agricultural Research Institute, Indian Society Genet Plant Breed, New Delhi, pp 18–22

    Google Scholar 

  • Toker C, Canci H (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 195:47–54

    Article  Google Scholar 

  • Toker C, Yadav SS, Solanki IS (2007) Mutation breeding. In: Yadav SS, McNeil D, Stevenson PC (eds) Lentil – an ancient crop for modern times. Springer, Dordrecht, pp 209–224

    Google Scholar 

  • Tollenaar D (1934) Untersuchungenueber Mutation beiTabak. I Entstehungsweise und Wesenkuenstlicherzeugter. Gen-MutantenGenetica 16:111–152

    Google Scholar 

  • Tollenaar D (1938) Untersuchungenueber Mutation beiTabak. II Einigekuenstlicherzeugte Chromosom-MutantenGenetica 20:285–294

    Google Scholar 

  • Torres AM (2009) Application of molecular markers for breeding disease resistant varieties in crop plants. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Dordrecht, pp 185–205

    Google Scholar 

  • Touraev A, Indrianto A, Wratschko I et al (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Ugandhar T, Venkateshwarlu M, Sammailah D, Reddy JM (2012) Rapid in vitro micro propagation of chick pea (Cicer arietinum L.) from shoot tip and cotyledonary node explants. J Biotechnol Biomater 2(6):1–6

    Google Scholar 

  • Upadhyaya HD, Gowda CLL (2009) Managing and enhancing the use of germplasm-strategies and methodologies. Tech Man 10. Patancheru, ICRISAT, Andhra Pradesh, India

    Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M et al (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valente F, Gauthier F, Bardol N et al (2013) OptiMAS: a decision support tool for marker-assisted assembly of diverse alleles. J Hered 104:586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Maesen LJG (1972) Cicer L. a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Meded Lingenland Bou Whoge School Wageningen 72(10):342

    Google Scholar 

  • Van der Maesen LJG (1984) Taxonomy, distribution and evolution of chickpea. In: Witcombe JR, Erskine W (eds) Genetic resources and their exploitation-chickpeas, faba beans and lentils. MartinusNijhoff/Junk, The Hague, Netherlands, pp 95–104

    Chapter  Google Scholar 

  • Van der Maesen LJG (1987) Cicer L. origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB (eds) The chickpea. CAB International, Wallingford, pp 11–34

    Google Scholar 

  • Van der Maesen LJG, Maxted N, Javadi F et al (2007) Taxonomy of the genus Cicer revisited. In: Yadav SS, Redden B, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford, pp 14–46

    Chapter  Google Scholar 

  • Van Zeist W, Bakker-Heeres J (1982) Archeobotanical studies in the Levant 1. Neolithic sites in the Damascus basin: Aswad, Ghoraife, and Ramad. Palaeohistor 24:165–256

    Google Scholar 

  • Varshney RK (2011) Application of next generation sequencing and genotyping technologies to develop large-scale genomic resources in SAT legume crops. In: Muralidharan K, Siddiq EA (eds) Genomics and crop improvement. Relevance and reservations. Acharya NG Ranga Agricultural University, Hyderabad, pp 1–10

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005a) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005b) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, May GD (2010) Legume genomics and breeding. Plant Breed Rev 33:257–304

    Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM et al (2013a) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2013.01.001

  • Varshney RK, Song C, Saxena RK (2013b) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bulletin, 1. Bulletin of Applied Botany and Plant Breeding, Leningrad

    Google Scholar 

  • Venu CH, Pavan U, Jayashree T (1999) Genotype dependent embryogenesis, organogenesis and Agrobacterium mediated transformation in pigeon pea (Cajanus cajan L.). Plant Cell Tissue Organ Cult 9:89–95

    Google Scholar 

  • Verma B, Kant U (1996) Micropropagation of Embilica officinale Gaertz through mature nodel explant. J Phytol Res 9:107–109

    Google Scholar 

  • Vishnu-Mitre (1974) The beginnings of agriculture: palaeobotanical evidence in India. In: Hutchinson JB (ed) Evolutionary studies in world crops, diversity and changes in the Indian sub-continent. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • Vláčilová K, Ohri D, Vrána J et al (2002) Development of flow cytogenetics and physical mapping in chickpea (Cicer arietinum L.). Chromosome Res 10:695–706

    Article  PubMed  Google Scholar 

  • Walley FL, Kyei-Boahen S, Hnatowich G et al (2005) Nitrogen and phosphorus fertility management for desi and kabuli chickpea. Canad J Plant Sci85:73–79

    Google Scholar 

  • Wang J, Gan YT, Clarke F et al (2006) Response of chickpea yield to high temperature stress during reproductive development. Crop Sci 46:2171–2178

    Article  Google Scholar 

  • Wang Q, Zhang B, Lu Q (2009) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol Biol Rep 27:139

    Article  CAS  Google Scholar 

  • Wani MR, Kozgar MI, Khan S et al (2014) Induced mutagenesis for the improvement of pulse crops with special reference to mung bean: a review update. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 247–288

    Chapter  Google Scholar 

  • Wani MR, Dar AR, Tak A et al (2017) Chemo-induced pod and seed mutants in mungbean (Vigna radiata L. Wilczek). SAARC J Agric 15(2):57–67

    Article  Google Scholar 

  • Weerakoon SR (2010) Direct and indirect somatic embryogenesis from petiole and leaf explants of purple fan flower (Scaevola aemula R. Br. cv. ‘Purple Fanfare’). World Acad Sci Eng Tech 5:701–709

    Google Scholar 

  • Wery J, Turc O, Lecoeur J (1993) Mechanism of resistance to cold, heat and drought in cool-season legumes, with special reference to chickpea and pea. In: Singh KB, Saxena MC (eds) Breeding for tolerance in cool season food legumes. Wiley, Chichester, pp 271–291

    Google Scholar 

  • Winter P, Benko-Iseppon AM, Huttel B et al (2000) A linkage map of chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum x C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Yadav V, Malan L, Jaiswal VS (1990) Micropropagation of Morus niger from shoot tip and nodal explants of mature trees. Scient Hort 44:61–64

    Article  Google Scholar 

  • Yadav SK, Katikala S, Yellisetty V et al (2012) Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiate. Springerplus 59:1–8

    Google Scholar 

  • Yankova V, Sovkova-Bobcheva S (2009). Studying of bean varieties (Phaseolus vulgaris L) reaction to bean weevil infestation (Acanthoscelides obtectus Say). Reports of bean improvement cooperative and national dry bean council research conference, pp 144–145

    Google Scholar 

  • Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655

    Article  Google Scholar 

  • Zahid MA, Islam MM, etal RMH (2008) Determination of economic injury levels of Helicoverpa armigera (Hubner) in chickpea. Bangla J Agric Res 33(3):555–563

    Google Scholar 

  • Zatloukalova P, Hřibová E, Kubaláková M et al (2011) Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res 19:729–739

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Wang HB, Chen GD et al (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphy 191:311–316

    Article  Google Scholar 

  • Zryd JP (1988) Cultures de cellules, tissus et organs végétaux. Fondements théoriques et utilisations pratiques. Presses Polytechniques Romandes

    Google Scholar 

  • Zur I, Dubas E, Golemiec E et al (2008) Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (Tritico secale Wittm.). Plant Cell Tiss Organ Cult 94:319–328

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

3.1.1 Appendix I: Research Institutes Relevant to Chickpea

Institution

Specialization

Contact information

Akdeniz Üniversitesi, Akademik Veri Yönetim, Sistemi, Turkey

Plant genetic resources, pre-breeding and phenotyping of plants under stress conditions such as cold, drought, salinity, Ascochyta blight, leaf miner and seed beetles

Dr. Cengiz Toker

http://aves.akdeniz.edu.tr/

International Crops Research Institute for the Semi-Arid Tropics(ICRISAT), Hyderabad, India

Applied genomics, molecular breeding, comparative and functional genomics and crop biotechnology

Dr. Rajeev K Varshney https://www.icrisat.org/

Indian Institute of Pulses Research(IIPR), Kanpur, India

Breeding

Dr. Yogesh Kumar

iipr.res.in

Indian Institute of Pulses ResearchIIPR, Kanpur, India

Breeding, abiotic stress

Uday Chand Jha

iipr.res.in

3.1.2 Appendix II: Chickpea Genetic Resources

Cultivar

Important traits

Cultivation location

DCP 92-3

Tolerant to lodging, wilt resistant, yellowish small seeds

North-Western Plains Zone, India

IPC 97-67 (SCS-3)

Early maturing, resistant to wilt and tolerant to terminal moisture stress

Jammu, India

IPCK 2002-29 (Shubhra)

Kabuli chickpea variety, large seeds (34 g/100-seed wt.), moderately resistant to wilt

Central Zone India

IPCK 2004-29 (Ujjawal)

Moderately resistant to fusarium wilt

Central Zone India

Venhar

Desi, high yielding, medium seeded, tolerant to A blight, suitable for cultivation in Pothwar region

BARI, Chakwal, Pakistan

Dashat

Desi, high yielding, medium seeded, resistant to Ascochyta blight, suitable for cultivation in Pothwar region

NARC, Islamabad

Parbat

Desi, high yielder than Dasht medium seeded, resistant to Ascochyta blight, suitable for cultivation in Pothwar region

NARC, Islamabad

BARI Chola-10

heat-tolerant, resistant to Botrytis gray mold (BGM) and also high-yielding

Ishurdi, Gazipur, Madaripur, Barishal, Jessore and Rajshahi districts of Bangladesh

Binasola-10

Binasola-10 is a high yielding chickpea variety, released in 2016. It matures in 115–122 days, hundred seed weight is 23.5g

Bangladesh

Binasola-6

Binasola-6 is a high yielding chickpea variety, released in 2009. Plant height varies from 48–60 cm. Maturity period ranges between 122–126 days. Maximum yield potential is 1.97 m/ha (av. 1.69 mt/ha). It has bright seed coat color. Seed contain 23.10 % protein

Bangladesh

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raina, A., Khan, S., Wani, M.R., Laskar, R.A., Mushtaq, W. (2019). Chickpea (Cicer arietinum L.) Cytogenetics, Genetic Diversity and Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_3

Download citation

Publish with us

Policies and ethics