Skip to main content

Polymer Formulations for Pesticide Release

  • Chapter
  • First Online:
Controlled Release of Pesticides for Sustainable Agriculture

Abstract

Pesticides are used to control any form of plant or organisms that can cause damage to human health or property. Agricultural products are attacked by a variety of pests during the production and storage. Despite usefulness and popularity of pesticides in controlling a variety of pests, they can cause many health risks arising from their exposure and residues in food and water. Also, the effective availabilities of traditional pesticide are usually less than 30% due to losses. Polymers, in the form of micro-nanocarriers, beads, granules and gels, are very important materials for the development of controlled release formulations (CRF) of pesticides which provide slow and controlled release of pesticides and also enhance the water-holding capacity of the soil. In this chapter, various types of natural and synthetic polymers used in the preparation of polymeric formulations and their release behavior are discussed. Various ways by which the diffusion of pesticides in polymer takes place and different formulation methods for controlled release pesticides were also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26(9):1337–1348

    Article  CAS  Google Scholar 

  2. Narayanasamy P (2006) Postharvest pathogens and disease management. John Wiley & Sons, New York

    Google Scholar 

  3. Maroni M, Fanetti AC, Metruccio F (2006) Risk assessment and management of occupational exposure to pesticides in agriculture. Med Lav 97:430–437

    CAS  Google Scholar 

  4. Bajpai AK, Giri A (2003) Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohyd Polym 53(3):271–279

    Article  CAS  Google Scholar 

  5. Gamon M, Saez E, Gil J, Boluda R (2003) Direct and indirect exogenous contamination. Arch Environ Contam Toxicol 44:141–151

    Article  CAS  Google Scholar 

  6. Shalaby SEM, Abdou GY (2010) The influence of soil microorganisms and bio-or-organic fertilizers on dissipation of some pesticides in soil and potato tube. J Plant Prot Res 50(1):86–92

    Article  CAS  Google Scholar 

  7. Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39(1):103–110

    Article  Google Scholar 

  8. CICOPLAFEST (2004). Catalogo Oficial de Plaguicidas. Comisión Intersecretarial para el Control de Proceso y Uso de plaguicidas, Fertilizantes y Sustancias Tóxicas

    Google Scholar 

  9. Maghchiche A, Haouam A, Immirzi B (2010) Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions. J Taibah Univ Sci 4(1):9–16

    Article  Google Scholar 

  10. Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z, Cui H (2018) Advances in targeted pesticides with environmentally responsive controlled release. Nanomaterials 8(2):1–18

    Article  CAS  Google Scholar 

  11. Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 12:453–469

    Article  CAS  Google Scholar 

  12. Kumar S, Bhanjana G, Sharma A (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr Polym 101:1061–1067

    Article  CAS  Google Scholar 

  13. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235

    Article  CAS  Google Scholar 

  14. https://www.grandviewresearch.com/industry-analysis/slow-controlled-release-pesticides-market

  15. Isıklan N (2007) Controlled release study of carbaryl insecticide from calcium alginate and nickel alginate hydrogel beads. J Appl Polym Sci 105:718–725

    Article  CAS  Google Scholar 

  16. Kumbar SG, Ashok Dave AM, Aminabhavi TM (2003) Release kinetics and diffusion coefficients of solid and liquid pesticides through interpenetrating polymer network beads of polyacrylamide-g-guar gum with sodium alginate. J Appl Polymer Sci 90:451–457

    Article  CAS  Google Scholar 

  17. Grillo R, Pereira ADES, Melo NFS, Porto RM, Feitosa LO, Tonello PS, Filho NLD, Rosa AH, Lima R, Fraceto LF (2011) Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water. J Hazard Mater 186(2–3):1645–1651

    Article  CAS  Google Scholar 

  18. Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y, Zheng H, He G, Yin Y (2014) Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 463:108–114

    Article  CAS  Google Scholar 

  19. Sun Y, Ma Y, Fang G, Fu Y (2016) Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. Bio Res 11(1):2361–2371

    CAS  Google Scholar 

  20. Wang Y, Wang A, Wang C, Cui B, Sun C, Zhao X, Zeng Z, Shen Y, Gao F, Liu G, Cui H (2017) Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  21. Liu B, Wang Y, Yang F, Wang X, Shen H, Cui H, Wu D (2016) Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloid Surf B 144:38–45

    Article  CAS  Google Scholar 

  22. Chen H, Huang G, Zhou H, Zhou X, Xu H (2018) Highly efficient triazolone/metal ion/polydopamine/MCM-41 sustained release system with pH sensitivity for pesticide delivery. R Soc Open Sci 5(7):1–10

    Article  CAS  Google Scholar 

  23. Volova TG, Zhila NO, Vinogradova ON, Nikolaeva ED, Kiselev EG, Shumilova AA, Shershneva AM, Shishatskaya EI (2015) Constructing herbicide metribuzin sustained-release formulations based on the natural polymer poly-3-hydroxybutyrate as a degradable matrix. J Environ Sci Health B 51(2):113–115

    Article  CAS  Google Scholar 

  24. Frandsen MV, Pedersen MS, Zellweger M, Gouin S, Roorda SD, Phan TQC (2010) Piperonyl butoxide and deltamethrin containing insecticidal polymer matrix comprising HDPE and LDPE. Patent Number WO 2010015256(A2):20100211

    Google Scholar 

  25. Cespedes FF, Flores CIF, Fernandez ID, Pena FV, Sanchez MV, Perez MF (2012) Preparation and characterization of imidacloprid lignin-polyethylene glycol matrices coated with ethylcellulose. J Agric Food Chem 60:1042–1051

    Article  CAS  Google Scholar 

  26. Shakil NA, Singh MK, Pandey A, Kumar J, Parmar VS, Singh MK, Pandey RP, Watterson AC (2010) Development of poly(Ethylene Glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromol Sci A Pure App Chem 47:241–247

    Article  CAS  Google Scholar 

  27. Chin CP, Wu HS, Wang SS (2011) New approach to pesticide delivery using nanosuspensions: research and applications. Ind Eng Chem Res 50:7637–7643

    Article  CAS  Google Scholar 

  28. Paula HCB, Sombra FM, Abreu FOMS, de Paula RCM (2010) Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. J Brazilian Chem Soc 21:2359–2366

    Article  CAS  Google Scholar 

  29. Badawy MEI, Taktak NEM, Awad OM, Elfiki SA, El-Ela NEA (2015) Larvicidal activity of temephos released from new chitosan/alginate/gelatin capsules against Culex pipiens. Int J Mosq Res 2(3):45–55

    Google Scholar 

  30. Celis R, Adelino MA, Hermosin MC, Cornejo J (2012) Montmorillonite—chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209–210:67–76

    Article  CAS  Google Scholar 

  31. Sopena F, Villaverde J, Maqueda C, Morillo E (2011) Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system. J Hazard Mater 195:298–305

    Article  CAS  Google Scholar 

  32. Jerobin J, Sureshkumar RS, Anjali CH et al (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90:1750–1756

    Article  CAS  Google Scholar 

  33. Campos EVR, De Oliveira JL, Da Silva CMG, Pascoli M, Pasquoto T, Lima R, Abhilash PC, Fraceto LF (2015) Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications, Scientific Reports vol 5, Article number: 13809

    Google Scholar 

  34. Daems F, Béra F, Lorge S, Fischer C, Brostaux Y, Francis F, Lognay G, Heuskin S (2016) Impact of climatic factors on the release of E-β-caryophyllene from alginate beads. Biotechnol Agron Soc Environ 20(2):130–142

    CAS  Google Scholar 

  35. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  36. Wilkins RM (ed) (1990) Controlled delivery of crop-protection agents. Taylor and Francis Ltd, London

    Google Scholar 

  37. Hassani LN, Hendra F, Bouchemal K (2012) Auto-associative amphiphilic polysaccharides as drug delivery systems. DrugDiscov Today 7:608–614. https://doi.org/10.1016/j.drudis.2012.01.016

    Article  CAS  Google Scholar 

  38. Fernandez-Perez M (2007) Controlled release systems to prevent the agroenvironmental pollution derived from pesticide use. J Environ Sci Health B 42(7):857–862

    Article  CAS  Google Scholar 

  39. Singh B, Sharma DK, Dhiman A (2013) Environment friendly agar and alginate-based thiram delivery system. Toxicol Environ Chem 95(4):567–578

    Article  CAS  Google Scholar 

  40. Wlodarczyk M, Siwek H (2013) Clomazone release kinetics from alginate matrix to the water environment. Przemysl Chem 92(8):1513–1516

    CAS  Google Scholar 

  41. Alromeed AA, Scrano L, Bufo S, Undabeytia T (2015) Slow-release formulations of the herbicide MCPA by using clay-protein composites. Pest Manage Sci 71(9):1303–1310

    Article  CAS  Google Scholar 

  42. Hoogevest PV, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116(9):1088–1107

    Article  CAS  Google Scholar 

  43. Chowdhury MA (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. Int J Biol Macromol 65:136–147

    Article  CAS  Google Scholar 

  44. Huang D, Li W, Wang T, Shen H, Zhao P, Liu BX, You Y, Ma Y, Yang F, Wu D, Wang S (2015) Isoniazid conjugated poly (lactide-co-glycolide): long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials 52:417–425

    Article  CAS  Google Scholar 

  45. Duan Y, Zhang B, Chu L, Tong HH, Liu W, Zhai G (2016) Colloids Surf B Biointerfaces 141:345–354

    Article  CAS  Google Scholar 

  46. Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2003) pH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J Appl Polym Sci 87:394–403

    Article  CAS  Google Scholar 

  47. Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3(1):299–314

    Article  Google Scholar 

  48. Raheb A, Akelah A, Issa R, Solaro R, Chiellini E (1991) Herbicide containing methacrylate, synthesis, polymerization and release investigation. J Contr Release 17:113–122

    Article  Google Scholar 

  49. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Bio Macromolecules 77:36–51

    Article  CAS  Google Scholar 

  50. Sun G, Wheatley WB, Worley SD (1994) A new cyclic N-Halamine. Biocidal polymer. Indian Eng Chem Res 33:68–170

    Google Scholar 

  51. Miller T, Nelson LL, Young WW, Roberts LW, Roberts DR, Wilkinson RN (1973) Polymer formulations of mosquito larvicides. I. Effectiveness of polyethylene and polyvinyl chloride formulations of chlorpyrifos applied to artificial field pools. Mosq News 33(2):148–155

    CAS  Google Scholar 

  52. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  53. Riyajan SA, Sakdapipanich JT (2009) Encapsulated neem extract containing Azadirachtin-A within hydrolyzed Poly(vinyl acetate) for controlling its release and photodegradation stability. Chem Eng J 152(2–3):591–597

    Article  CAS  Google Scholar 

  54. Scher HB (1999) Controlled-release delivery systems for pesticides. CRC Press, Boca Raton

    Google Scholar 

  55. Badawy ME, Taktak NE, Awad OM, Elfiki SA, Ela-Ela NEA (2016) Evaluation of released malathion and spinosad from chitosan/alginate/gelatin capsules against culex pipiens larvae. Res Rep Trop Med 7:23–38

    Google Scholar 

  56. Jyothi SS, Seethadevi A, Prabha KS, Muthuprasanna P, Pavitra P (2012) Microencapsulation: a review. Int J Pharma Bio Sci 3(1):509–531

    Google Scholar 

  57. Latheef MA, Dailey OD, Franz E (1993) Efficacy of polymeric controlled release formulations of sulprofos against tobacco budworm, heliothis virescens (Lepidoptera:Noctuidae) on cotton. In: Berger PD, Devisetty BN, Hall FR. (eds) Pesticide formulations and applications systems, vol 13, ASTM STP 1183. American Society for Testing and Materials, Philadelphia, pp 300–311

    Google Scholar 

  58. Gregoriadis G, Bacon A, Wanderley WC, Mccormack B (2002) A role for liposomes in genetic vaccination. Vaccine 20:B1–B9

    Article  CAS  Google Scholar 

  59. WALDE 2006. Formation and properties of fatty acid vesicles (liposomes) In: Liposomes technology. Inform Healthcare, New-York

    Google Scholar 

  60. Tahibi A, Sakurai JD, Mathur R, Wallach DFH (1991) Novasome vesicles in extended pesticide formulation. Proc Symp Contr Rel Bioact Mat 18(1):231–232

    Google Scholar 

  61. Chrai SS, Murari R, Ahmed I (2002) Liposomes (a review). part two: drug delivery systems. Bipharm 15:40–43

    CAS  Google Scholar 

  62. Hwang C, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ, Youn YN, Park HJ, Yasunaga-Aokt C, Yu YM (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56(1):33–40

    CAS  Google Scholar 

  63. Lehman SE, Larsen SC (2014) Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environ Sci Nano 1(3):200–213

    Article  CAS  Google Scholar 

  64. Sun R, Wang W, Wen Y, Zhang X (2015) Recent advance on mesoporous silica nanoparticles-based controlled release system: intelligent switches open up new horizon. Nanomaterials 5(4):2019–2053

    Article  CAS  Google Scholar 

  65. Cao L, Zhang H, Cao C, Zhang J, Li F, Huang Q (2016) Quaternized chitosan-capped mesoporous silica nanoparticles as nanocarriers for controlled pesticide release. Nanomaterials 6(7):1–13

    Article  CAS  Google Scholar 

  66. Sato C, Watanabe M, Nakamura Y, Okuda S (1982) Jpn. Kokai Tokkyo Koho JP 57-126402 (in Japanese)

    Google Scholar 

  67. Anka Rao A, Narasimha Rao V, Seetha Devi A, Anil K, Vasu Naik V, Rajesh A (2015) Oral controlled release drug delivery system: an overview. Int J Pharma Chem Res 1(1):6–15

    Google Scholar 

  68. Sfirakis A, Rogers CE (1981) Sorption and diffusion of alcohols in amorphous polymers. Polym Eng Sci 21(9):542–547

    Article  CAS  Google Scholar 

  69. Grillo R, Clemente Z, Oliveira JLD, Campos EVR, Chalupe VC, Jonsson CM, Lima RD, Sanches G, Nishisaka CS, Rosa AH, Oehlke K, Greiner R, Fraceto LF (2015) Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. J Hazard Mater 286:562–572

    Article  CAS  Google Scholar 

  70. Faria DM, Junior SMD, Nascimento JPLD, Nunes EDS, Marques RP, Rossinoc LS, Moretoa JA (2016) Development and evaluation of a controlled release system of TBH herbicide using alginate microparticles. Mate Res 20(1):225–235

    Article  CAS  Google Scholar 

  71. Liu Y, Yan L, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79(3):458–465

    Article  CAS  Google Scholar 

  72. Sharifian I, Farahani S, Shafiei SE, Sanchooli M (2015) Evaluation of release time and efficiency of a botanical insecticide pellet under laboratory conditions. J Entomol Zool Stud 3(2):355–358

    Google Scholar 

  73. Kenawy ER (1998) Recent advances in controlled release of agrochemicals. J Macromol Sci C Polym Rev 38:365–390

    Article  Google Scholar 

  74. Morgan PW, Kwolek SL (1959) Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J Polym Sci 11:299–327

    Article  Google Scholar 

  75. Sinha VR, Goyal V, Bhinge JR, Mittal BR, Trehan A (2003) Diagnostic microspheres: an overview. Crit Rev Ther Drug Carrier Syst 20(6):431–460

    Article  CAS  Google Scholar 

  76. Perignon C, Ongmayeb G, Neufeld R, Frere Y, Poncelet D (2014) Microencapsulation by interfacial polymerisation: membrane formation and structure. J Microencapsul 32(1):1–15

    Article  CAS  Google Scholar 

  77. Moghbeli MR, Abedi V, Dekamin MG (2011) Microencapsulation of Ethion by interfacial polymerization utilizing potassium phthalimide-N-oxyl (PPINO) as a promoter. Iran J Chem Eng 8(4):34–42

    Google Scholar 

  78. Bakan JA (1975) Microencapsulation of pesticides and other agricultural materials. In: Harris

    Google Scholar 

  79. Mohanty B, Aswal VK, Kohlbrecher J, Bohidar HB(2005) Synthesis of Gelatin nanoparticles via simple coacervation. 21(3):149–160

    Google Scholar 

  80. Kiyoyama S, Shiomori K, Kawano Y, Hatate Y (2003) Preparation of microcapsules and control of their morphology. J Microencapsul 20(4):497–508

    Article  CAS  Google Scholar 

  81. Ahirrao SP, Gide PS, Shrivastav B, Sharma P (2014) Ionotropic gelation: a promising cross linking technique for hydrogels. Res Rev J Pharma Nanotechnol 2(1):1–6

    CAS  Google Scholar 

  82. Kumbar SG, Dave AM, Aminabhavi TM (2003) Release kinetics and diffusion coefficients of solid and liquid pesticides through interpenetrating polymer network beads of polyacrylamide-g- Guar Gum with sodium alginate. J Appl Polymer Sci 90:451–457

    Article  CAS  Google Scholar 

  83. Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El Dally M (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31(8):1040–1049

    Article  CAS  Google Scholar 

  84. Wu P, He X, Wang K, Tan W, He C, Zheng M (2009) A novel methotrexate delivery system based on chitosan-methotrexate covalently conjugated nanoparticles. J Biomed Nanotechnol 5(5):557–564

    Article  CAS  Google Scholar 

  85. Garza CB, Fernández JY, Huerta BEB (2013) Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Res Int 54(1):641–649

    Article  CAS  Google Scholar 

  86. Sen D, Khan A, Bahadur J, Mazumder S, Sapra BK (2010) Use of small-angle neutron scattering to investigate modifications of internal structure in self-assembled grains of nanoparticles synthesized by spray drying. J Colloid Interface Sci 347(1):25–30

    Article  CAS  Google Scholar 

  87. Gong P, Zhang L, Han X, Shigwedha N, Song W, Yi H, Du Cao C M (2014) Injury mechanisms of lactic acid bacteria starter cultures during spray drying: a review. Drying Technol 32(7):93–800

    Article  CAS  Google Scholar 

  88. Ribeiro RF, Motta MH, Flores FC, Beck RCR, Harter APG, Schaffazick SR, Silva CDBD (2016) Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products. Mater Sci Eng C 59:875–884

    Article  CAS  Google Scholar 

  89. Abbaspourrad A, Datta SS, Weitz DA (2013) Controlling release from pH-responsive microcapsules. Langmuir 29(41):12697–12702

    Article  CAS  Google Scholar 

  90. Li X, Anton N, Arpagaus C, Belleteix F, Vandamme T (2010) Nanoparticles by spray drying using innovative new technology: the Buchi Nano Spray Dryer B-90. J Control Release 147(2):304–310

    Article  CAS  Google Scholar 

  91. Schafroth N, Arpagaus C, Jadhav UY, Makne S, Douroumis D (2012) Colloids Surf B Biointerfaces 90:8–15

    Article  CAS  Google Scholar 

  92. Ungaro F, D’Angelo I, Coletta C, Di Villa Bianca RD, Sorrentino R, Perfetto B, Tufano MA, Miro A, Rotonda MIL, Quaglia F (2011) Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J Controlled Release 157(1):149–159

    Article  CAS  Google Scholar 

  93. Desai KGH, Park HJ (2005) Preparation of cross-linked chitosan microspheres by spray drying: Effect of cross-linking agent on the properties of spray dried microspheres. J Microencapsul 22(4):377–395

    Article  CAS  Google Scholar 

  94. Horaczek H, Viernstein H (2004) Beauveria brongniartii subjected to spray-drying in a composite carrier matrix system. J Microencapsul 21(3):317–330

    Article  CAS  Google Scholar 

  95. Kurmen JEC, Alvarez MIG, Rivero LFV (2015) microencapsulation of a colombian spodoptera frugiperda nucleopolyhedrovirus with Eudragit® S100 by spray drying. Braz Arch Biol Technol 58(3):468–476

    Article  CAS  Google Scholar 

  96. Albertini B, Passerini N, Sabatino MD, Vitali B, Brigidi P, Rodriguez L (2008) Polymerlipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. Eur J Pharm Sci 36:591–601

    Article  CAS  Google Scholar 

  97. Kenawy ER, Sherringtont DC (1992) Controlled release of agrochemicalmolecules chemically bound to polymers. Eur Polym J 28(8):841–862

    Article  CAS  Google Scholar 

  98. Mitrus M, Wojtowicz A, Moscicki L (2009) Biodegradable polymers and their practical utility. In: Janssen LPBM, Leszek Moscicki L (eds) Thermoplastic starch: a green material for various industries, 1st edn. Wiley, Germany SAGARPA, SEDESOL, México, D. F, p 481

    Google Scholar 

  99. Allan GG, Chopra CS, Neogi AN, Wilkins R (1972) Design and synthesis of controlled release pesticide-polymer combinations. Nature 234(5328):349–351

    Article  Google Scholar 

  100. Akelah A (1990) Applications of functionalized polymers in agriculture. J Islamic Acad Sci 3(1):49–61

    Google Scholar 

  101. Singh K, Pasha A, Rani BEA (2013) Preparation of molecularly imprinted polymers for heptachlor: an organochlorine pesticide. Chron Young sci 4(1):46–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A., Saini, R.K., Bajpai, A.K. (2020). Polymer Formulations for Pesticide Release. In: K. R., R., Thomas, S., Volova, T., K., J. (eds) Controlled Release of Pesticides for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23396-9_8

Download citation

Publish with us

Policies and ethics