Skip to main content

Chemistry and Toxicology Behind Insecticides and Herbicides

  • Chapter
  • First Online:
Book cover Controlled Release of Pesticides for Sustainable Agriculture

Abstract

Pesticides are chemicals used around the globe to kill, reduce, or repel whatever organism capable of threatening public health or economy. Although essential to maintain agricultural production, these compounds target systems or enzymes on the intended organism that are often similar or even the same present in other living beings. Furthermore, a considerable range of pesticides is environmentally persistent and has bioaccumulation characteristics. Even after some of the pesticides have been banned and prohibited from use, these can still be found accumulated in the environment, threatening the health and even life. Hence, the understanding of how the insecticides and herbicides mode of action work and how these chemicals can negatively affect their surrounding is essential. In this chapter, an overview of chemical aspects, uses, environmental persistence, and human toxicity concerning herbicides and insecticides will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526. https://doi.org/10.1002/elsc.200520098

    Article  CAS  Google Scholar 

  2. Carson R (1962) Silent spring. Houghton Mifflin Company, Boston

    Google Scholar 

  3. Álvarez-Muñoz D, Llorca M, Blasco J, Barceló D (2016) Contaminants in the marine environment. In: Marine ecotoxicology. Elsevier, pp 1–34

    Google Scholar 

  4. Claver A, Ormad P, Rodríguez L, Ovelleiro JL (2006) Study of the presence of pesticides in surface waters in the Ebro river basin (Spain). Chemosphere 64:1437–1443. https://doi.org/10.1016/j.chemosphere.2006.02.034

    Article  CAS  Google Scholar 

  5. Cruzeiro C, Rocha E, Pardal MÂ, Rocha MJ (2016) Seasonal-spatial survey of pesticides in the most significant estuary of the Iberian Peninsula—the Tagus River estuary. J Clean Prod 126:419–427. https://doi.org/10.1016/j.jclepro.2016.03.005

    Article  CAS  Google Scholar 

  6. Nollet LML, Rathore HS (2010) Handbook of pesticides methods of pesticide residues analysis. CRC Press, Taylor & Francis Group

    Google Scholar 

  7. Au AM (2003) Pesticides and herbicides | Types, uses, and determination of herbicides. In: Encyclopedia of food sciences and nutrition. Elsevier, pp 4483–4487

    Google Scholar 

  8. Zimdahl RL (2018) Properties and uses of herbicides. In: Fundamentals of weed science. Elsevier, pp 463–499

    Google Scholar 

  9. Gupta PK (2014) Herbicides and fungicides. In: Biomarkers in toxicology. Elsevier, pp 409–431

    Google Scholar 

  10. Gupta PK (2011) Herbicides and fungicides. In: Reproductive and developmental toxicology. Elsevier, pp 503–521

    Google Scholar 

  11. Choudhury PP (2019) Transformation of herbicides in the environment. In: Herbicide residue research in India. Springer, Singapore, pp 415–442

    Google Scholar 

  12. Gupta PK (2018) Toxicity of herbicides. In: Veterinary toxicology, 3rd edn. Elsevier, pp 553–567

    Google Scholar 

  13. Kanawi E, Van Scoy AR, Budd R, Tjeerdema RS (2016) Environmental fate and ecotoxicology of propanil: a review. Toxicol Environ Chem 98:689–704. https://doi.org/10.1080/02772248.2015.1133816

    Article  CAS  Google Scholar 

  14. Antonious GF (2010) Mobility and half-life of bensulide in agricultural soil. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 45:1–10. https://doi.org/10.1080/03601230903404283

    Article  CAS  Google Scholar 

  15. Santos TCR, Rocha JC, Alonso RM, Marti E (1998) Rapid degradation of propanil in rice crop fields. Environ Sci Technol 32:3479–3484

    Article  CAS  Google Scholar 

  16. Richardson R, Whaley CM, Wilson HP, Hines TE (2004) Weed control and potato (Solanum tuberosum) tolerance with dimethenamid isomers and other herbicides. Am J Pot Res 81:299. https://doi.org/10.1007/BF02870175

    Article  CAS  Google Scholar 

  17. Glavaški OS, Petrović SD, Rajaković-Ognjanović VN et al (2016) Photodegradation of dimethenamid-P in deionised and ground water. Chem Ind Chem Eng Q 22:101–110. https://doi.org/10.2298/CICEQ150608025G

    Article  CAS  Google Scholar 

  18. Liu J (2014) Propanil. Encycl Toxicol Third Ed 3:1092–1093. https://doi.org/10.1016/B978-0-12-386454-3.00187-1

    Article  Google Scholar 

  19. Harp PR (2010) Dicamba. In: Hayes’ handbook of pesticide toxicology. Elsevier, pp 1849–1852

    Google Scholar 

  20. Kavrakovski ZS, Rafajlovska VG (2015) Development and validation of thin layer chromatography method for simultaneous determination of seven chlorophenoxy and benzoic acid herbicides in water. J Anal Chem 70:995–1000. https://doi.org/10.1134/S1061934815080122

    Article  CAS  Google Scholar 

  21. Fogarty AM, Tuovinen OH (1995) Microbiological degradation of the herbicide dicamba. J Ind Microbiol 14:365–370. https://doi.org/10.1007/BF01569952

    Article  CAS  Google Scholar 

  22. Public Eye Brazil bans paraquat and the agribusiness lobby is gearing up for action. https://www.publiceye.ch/en/news/detail/brazil-bans-paraquat-and-the-agribusiness-lobby-is-gearing-up-for-action/. Accessed 30 Jan 2019

  23. Pope CN (2005) Diquat. In: Encyclopedia of toxicology. Elsevier, pp 78–79

    Google Scholar 

  24. Baer KN (2005) Paraquat. In: Encyclopedia of toxicology. Elsevier, pp 329–330

    Google Scholar 

  25. Janz DM (2014) Dinitrophenols. In: Encyclopedia of toxicology. Elsevier, pp 177–178

    Google Scholar 

  26. Raman P (2005) Dinoseb. In: Encyclopedia of toxicology. Elsevier, pp 63–65

    Google Scholar 

  27. Badanthadka M, Mehendale HM (2014) Dinoseb. In: Encyclopedia of toxicology. Elsevier, pp 183–185

    Google Scholar 

  28. Young RA (2014) Dinitroanilines. Encycl Toxicol Third Ed 2:172–174. https://doi.org/10.1016/B978-0-12-386454-3.00670-9

    Article  Google Scholar 

  29. Wallace DR (2014) Trifluralin. Encycl Toxicol Third Ed 4:846–848. https://doi.org/10.1016/B978-0-12-386454-3.00205-0

    Article  Google Scholar 

  30. Hess FG, Harris JE, Pendino K, Ponnock K (2010) Imidazolinones. In: Hayes’ handbook of pesticide toxicology. Elsevier, pp 1853–1863

    Google Scholar 

  31. Lamberth C, Dinges J (2012) Bioactive heterocyclic compound classes: agrochemicals. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  32. Dube S, Lesoli MS, Fatunbi AO (2009) The efficacy and safety of bromacil based herbicide for the control of the invasive bush species in South Africa rangelands. Afr J Biotechnol 8:1776–1781

    CAS  Google Scholar 

  33. Caverly DJ, Denney RC (1977) Determination of residues of the herbicides bromacil, lenacil and terbacil in soils by gas chromatography. Analyst 102:576–579

    Article  CAS  Google Scholar 

  34. Boydston RA, Al-Khatib K (2016) Terbacil and bromacil cross-resistance in powell amaranth (Amaranthus powellii). Weed Sci 40:513–516

    Article  Google Scholar 

  35. Chelme-Ayala P, El-Din MG, Smith DW (2010) Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus H2O2 advanced oxidation process. Water Res 44:2221–2228. https://doi.org/10.1016/j.watres.2009.12.045

    Article  CAS  Google Scholar 

  36. Kennepohl E, Munro IC, Bus JS (2010) Phenoxy herbicides (2,4-D). Hayes’ Handb Pestic Toxicol 1829–1847. https://doi.org/10.1016/B978-0-12-374367-1.00084-7

    Chapter  Google Scholar 

  37. Mei X-Y, Hong Y-Q, Chen G-H (2016) Review on analysis methodology of phenoxy acid herbicide residues. Food Anal Methods 9:1532–1561. https://doi.org/10.1007/s12161-015-0327-z

    Article  Google Scholar 

  38. Tayeb W, Chaieb I, Hammami M (2011) Environmental fate and effects of 2,4-dichlorophenoxyacetic herbicide. In: Herbicides: properties, crop protection and environmental hazards. Nova Science Publishers

    Google Scholar 

  39. Sterling TD, Arundel AV (1986) Health effects of phenoxy herbicides. A review. Scand J Work Environ Health 12:161–173. https://doi.org/10.5271/sjweh.2160

    Article  CAS  Google Scholar 

  40. Alexander BH, Mandel JS, Baker BA et al (2007) Biomonitoring of 2,4-dichlorophenoxyacetic acid exposure and dose in farm families. Environ Health Perspect 115:370–376. https://doi.org/10.1289/ehp.8869

    Article  CAS  Google Scholar 

  41. Hatch EE, Nelson JW, Stahlhut RW, Webster TF (2010) Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl 33:324–332. https://doi.org/10.1111/j.1365-2605.2009.01035.x

    Article  CAS  Google Scholar 

  42. Carbone V, Velkov T (2013) Interaction of phthalates and phenoxy acid herbicide environmental pollutants with intestinal intracellular lipid binding proteins. Chem Res Toxicol 26:1240–1250. https://doi.org/10.1021/tx400170t

    Article  CAS  Google Scholar 

  43. Pochettino AA, Bongiovanni B, Duffard RO, Evangelista de Duffard AM (2013) Oxidative stress in ventral prostate, ovary, and breast by 2,4-dichlorophenoxyacetic acid in pre- and postnatal exposed rats. Environ Toxicol 28:1–10. https://doi.org/10.1002/tox.20690

    Article  CAS  Google Scholar 

  44. Duke SO, Kenyon WH (1988) Chapter 2. Polycyclic alkanoic acids. In: Herbicides chemistry: degradation and mode of action

    Google Scholar 

  45. Hao G-F, Zuo Y, Yang S-G, Yang G-F (2011) Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery. Chim Int J Chem 65:961–969. https://doi.org/10.2533/chimia.2011.961

    Article  CAS  Google Scholar 

  46. Dayan FE, Duke SO (2010) Protoporphyrinogen oxidase-inhibiting herbicides. In: Hayes’ handbook of pesticide toxicology, 3rd edn. Elsevier, pp 1733–1751

    Google Scholar 

  47. Sartori SK, Alvarenga ES, Franco CA et al (2018) One-pot synthesis of anilides, herbicidal activity and molecular docking study. Pest Manag Sci 74:1637–1645. https://doi.org/10.1002/ps.4855

    Article  CAS  Google Scholar 

  48. Chiriac CI, Onciu M, Tanasa F (2004) Synthesis of aromatic amides at room temperature using triphenyl phosphite-4-dimethylaminopyridine as reagent. Des Monomers Polym 7:331–335. https://doi.org/10.1163/1568555041475284

    Article  CAS  Google Scholar 

  49. Busi R (2014) Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids. Pest Manag Sci 70:1378–1384. https://doi.org/10.1002/ps.3746

    Article  CAS  Google Scholar 

  50. Christopher DN, Udu IA, Florence O et al (2013) Acute toxicity of the chloroacetanilide herbicide butachlor and its effects on the behavior of the freshwater fish Tilapia zillii. Afr J Biotechnol 12:499–503. https://doi.org/10.5897/AJB12.2433

    Article  CAS  Google Scholar 

  51. Chang J, Liu S, Zhou S et al (2013) Effects of butachlor on reproduction and hormone levels in adult zebrafish (Danio rerio). Exp Toxicol Pathol 65:205–209. https://doi.org/10.1016/j.etp.2011.08.007

    Article  CAS  Google Scholar 

  52. Geng B, Lin L, Zhang Q, Zhong B (2010) Genotoxicity of the pesticide dichlorvos and herbicide butachlor on Rana zhenhaiensis tadpoles. Asian Herpetol Res 1:118–122. https://doi.org/10.3724/SP.J.1245.2010.00118

    Article  Google Scholar 

  53. Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage: 2006 and 2007 market estimates. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  54. Counihan JL, Duckering M, Dalvie E et al (2017) Chemoproteomic profiling of acetanilide herbicides reveals their role in inhibiting fatty acid oxidation. ACS Chem Biol 12:635–642. https://doi.org/10.1021/acschembio.6b01001

    Article  CAS  Google Scholar 

  55. Barr DB, Buckley B (2011) In vivo biomarkers and biomonitoring in reproductive and developmental toxicity. In: Reproductive and developmental toxicology. Elsevier, pp 253–265

    Google Scholar 

  56. Stevens J, Breckenridge C, Simpkins J, Eldridge J (2001) Symmetrical and asymmetrical triazine herbicides. In: Handbook of pesticide toxicology, 2nd edn. Elsevier, pp 1511–1519

    Google Scholar 

  57. Breckenridge CB, Werner C, Stevens JT, Sumner DD (2008) Hazard assessment for selected symmetrical and asymmetrical triazine herbicides. In: The triazine herbicides. Elsevier, pp 387–398

    Google Scholar 

  58. Fan AM (2014) Triazines. In: Encyclopedia of toxicology. Elsevier, pp 810–815

    Google Scholar 

  59. Armendáriz CR, de la Torre AH, Fernández ÁJG, González GL (2014) Metribuzin. In: Encyclopedia of toxicology. Elsevier, pp 327–329

    Google Scholar 

  60. Liu J (2014) Atrazine. In: Encyclopedia of toxicology. Elsevier, pp 336–338

    Google Scholar 

  61. Maples RD (2014) Propazine. In: Encyclopedia of toxicology. Elsevier, pp 1096–1098

    Google Scholar 

  62. Billington R, Gehen SC, Hanley TR (2010) Toxicology of triazolopyrimidine herbicides. In: Hayes’ handbook of pesticide toxicology, 3rd edn. Elsevier, pp 1865–1885

    Google Scholar 

  63. Doble M, Kumar A (2005) Biodegradation of pesticides. In: Biotreatment of industrial effluents. Elsevier, pp 89–100

    Google Scholar 

  64. Gupta RC, Milatovic D (2014) Insecticides. In: Biomarkers in toxicology. Elsevier, pp 389–407

    Google Scholar 

  65. Zhang Y, Wu J, Xu W et al (2017) Cytotoxic effects of avermectin on human HepG2 cells in vitro bioassays. Environ Pollut 220:1127–1137. https://doi.org/10.1016/j.envpol.2016.11.022

    Article  CAS  Google Scholar 

  66. Bai SH, Ogbourne S (2016) Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere 154:204–214. https://doi.org/10.1016/j.chemosphere.2016.03.113

    Article  CAS  Google Scholar 

  67. Türkan F, Huyut Z, Atalar MN (2018) The toxicological impact of some avermectins on human erythrocytes glutathione S-transferase enzyme. J Biochem Mol Toxicol 32:e22205. https://doi.org/10.1002/jbt.22205

    Article  CAS  Google Scholar 

  68. Awasthi A, Razzak M, Al-Kassas R et al (2012) An overview on chemical derivatization and stability aspects of selected avermectin derivatives. Chem Pharm Bull 60:931–944. https://doi.org/10.1248/cpb.c12-00258

    Article  CAS  Google Scholar 

  69. Boukhrissa A, Ferrag-Siagh F, Rouidi L-M et al (2017) Study of the degradation in aqueous solution of a refractory organic compound: avermectin type used as pesticide in agriculture. Water Sci Technol 76:1966–1980. https://doi.org/10.2166/wst.2017.310

    Article  CAS  Google Scholar 

  70. Thuan NH, Pandey RP, Sohng JK (2014) Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 98:7747–7759. https://doi.org/10.1007/s00253-014-5926-x

    Article  CAS  Google Scholar 

  71. Horsberg TE (2012) Avermectin use in aquaculture. Curr Pharm Biotechnol 13:1095–1102. https://doi.org/10.2174/138920112800399158

    Article  CAS  Google Scholar 

  72. Zhang Y, Luo M, Xu W et al (2016) Avermectin confers its cytotoxic effects by inducing DNA damage and mitochondria-associated apoptosis. J Agric Food Chem 64:6895–6902. https://doi.org/10.1021/acs.jafc.6b02812

    Article  CAS  Google Scholar 

  73. Yang C-C (2012) Acute human toxicity of macrocyclic lactones. Curr Pharm Biotechnol 13:999–1003. https://doi.org/10.2174/138920112800399059

    Article  CAS  Google Scholar 

  74. Gupta P (2018) Pesticides (agrochemicals). In: Illustrated toxicology. Elsevier, pp 165–194

    Google Scholar 

  75. Shankland DL, Hollingworth RM, Smyth T (1978) Pesticide and venom neurotoxicity. Springer US, Boston, MA

    Book  Google Scholar 

  76. Gao X, Tan Y, Guo H (2017) Simultaneous determination of amitraz, chlordimeform, formetanate and their main metabolites in human urine by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 1052:27–33. https://doi.org/10.1016/j.jchromb.2017.03.004

    Article  CAS  Google Scholar 

  77. Costa LG (2014) Chlordimeform. In: Encyclopedia of toxicology. Elsevier, pp 849–850

    Google Scholar 

  78. Hollingworth RM (1976) Chemistry, biological activity, and uses of formamidine pesticides. Environ Health Perspect 14:57–69. https://doi.org/10.1289/ehp.761457

    Article  CAS  Google Scholar 

  79. Filazi A, Yurdakok-Dikmen B (2018) Amitraz. In: Veterinary toxicology, 3rd edn. Elsevier, pp 525–531

    Google Scholar 

  80. Pener MP, Dhadialla TS (2012) An overview of insect growth disruptors; applied aspects. In: Advances in insect physiology. Elsevier Science, pp 1–162

    Google Scholar 

  81. Karuppuchamy P, Venugopal S (2016) Integrated pest management. In: Ecofriendly pest management for food security. Elsevier, pp 651–684

    Google Scholar 

  82. Siddall JB (1976) Insect growth regulators and insect control: a critical appraisal. Environ Health Perspect 14:119. https://doi.org/10.2307/3428369

    Article  CAS  Google Scholar 

  83. Lee S-H, Oh H-W, Fang Y et al (2015) Identification of plant compounds that disrupt the insect juvenile hormone receptor complex. Proc Natl Acad Sci 112:1733–1738. https://doi.org/10.1073/pnas.1424386112

    Article  CAS  Google Scholar 

  84. Subramanian S, Shankarganesh K (2016) Insect hormones (as pesticides). In: Ecofriendly pest management for food security. Elsevier, pp 613–650

    Google Scholar 

  85. Kennepohl E, Munro IC, Bus JS (2010) Phenoxy herbicides (2,4-D). In: Hayes’ handbook of pesticide toxicology. Elsevier, pp 1829–1847

    Google Scholar 

  86. Merzendorfer H (2013) Chitin synthesis inhibitors: old molecules and new developments. Insect Sci 20:121–138. https://doi.org/10.1111/j.1744-7917.2012.01535.x

    Article  CAS  Google Scholar 

  87. Sun R, Liu C, Zhang H, Wang Q (2015) Benzoylurea chitin synthesis inhibitors. J Agric Food Chem 63:6847–6865. https://doi.org/10.1021/acs.jafc.5b02460

    Article  CAS  Google Scholar 

  88. Monteiro JP, Jurado AS (2014) Methoprene. In: Encyclopedia of toxicology. Elsevier, pp 246–249

    Google Scholar 

  89. Ensley SM (2018) Neonicotinoids. In: Veterinary toxicology. Elsevier, pp 521–524

    Google Scholar 

  90. Bass C, Field LM (2018) Neonicotinoids. Curr Biol 28:R772–R773. https://doi.org/10.1016/j.cub.2018.05.061

    Article  CAS  Google Scholar 

  91. Butcherine P, Benkendorff K, Kelaher B, Barkla BJ (2019) The risk of neonicotinoid exposure to shrimp aquaculture. Chemosphere 217:329–348. https://doi.org/10.1016/j.chemosphere.2018.10.197

    Article  CAS  Google Scholar 

  92. Han W, Tian Y, Shen X (2018) Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192:59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149

    Article  CAS  Google Scholar 

  93. Goulson D (2013) REVIEW: an overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987. https://doi.org/10.1111/1365-2664.12111

    Article  Google Scholar 

  94. Auteri D, Arena M, Barmaz S et al (2017) Neonicotinoids and bees: the case of the European regulatory risk assessment. Sci Total Environ 579:966–971. https://doi.org/10.1016/j.scitotenv.2016.10.158

    Article  CAS  Google Scholar 

  95. Wang Z, Brooks B, Zeng EY, You J (2019) Comparative mammalian hazards of neonicotinoid insecticides among exposure durations. Environ Int 125:9–24. https://doi.org/10.1016/j.envint.2019.01.040  

    Article  CAS  Google Scholar 

  96. Mansouri A, Cregut M, Abbes C et al (2017) The environmental issues of DDT pollution and bioremediation: a multidisciplinary review. Appl Biochem Biotechnol 181:309–339. https://doi.org/10.1007/s12010-016-2214-5

    Article  CAS  Google Scholar 

  97. Tsai WT (2010) Current status and regulatory aspects of pesticides considered to be persistent organic pollutants (POPs) in Taiwan. Int J Environ Res Public Health 7:3615–3627. https://doi.org/10.3390/ijerph7103615

    Article  CAS  Google Scholar 

  98. Shen L, Wania F (2005) Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. J Chem Eng Data 50:742–768. https://doi.org/10.1021/je049693f

    Article  CAS  Google Scholar 

  99. Jayaraj R, Megha P, Sreedev P (2016) Review article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  100. Al-Malki AL, Moselhy SS (2011) Impact of pesticides residue and heavy metals on lipids and fatty acids composition of some seafoods of Red Sea (KSA). Hum Exp Toxicol 30:1666–1673. https://doi.org/10.1177/0960327110396535

    Article  CAS  Google Scholar 

  101. Ali U, Syed JH, Malik RN et al (2014) Organochlorine pesticides (OCPs) in South Asian region: a review. Sci Total Environ 476–477:705–717. https://doi.org/10.1016/j.scitotenv.2013.12.107

    Article  CAS  Google Scholar 

  102. Aksoy A, Guvenc D, Yavuz O et al (2012) Seasonal variation of polychlorinated biphenyls and organochlorine pesticide levels of sea and cultured farm fish in the Samsun Region of Turkey. Bull Environ Contam Toxicol 88:842–849. https://doi.org/10.1007/s00128-012-0561-7

    Article  CAS  Google Scholar 

  103. Choi M, Lee I-S, Jung R-H (2016) Rapid determination of organochlorine pesticides in fish using selective pressurized liquid extraction and gas chromatography–mass spectrometry. Food Chem 205:1–8. https://doi.org/10.1016/j.foodchem.2016.02.156

    Article  CAS  Google Scholar 

  104. Correia-Sá L, Fernandes VC, Carvalho M et al (2012) Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J Sep Sci 35:1521–1530. https://doi.org/10.1002/jssc.201200087

    Article  CAS  Google Scholar 

  105. Fernandes VC, Domingues VF, Mateus N, Delerue-Matos C (2011) Organochlorine pesticide residues in strawberries from integrated pest management and organic farming. J Agric Food Chem 59:7582–7591. https://doi.org/10.1021/jf103899r

    Article  CAS  Google Scholar 

  106. Correia-Sá L, Fernandes VC, Calhau C et al (2013) Optimization of QuEChERS procedure coupled to GC-ECD for organochlorine pesticide determination in carrot samples. Food Anal Methods 6:587–597. https://doi.org/10.1007/s12161-012-9463-x

    Article  Google Scholar 

  107. Maia ML, Correia-Sá L, Coelho A et al (2015) Eruca sativa: benefits as antioxidants source versus risks of already banned pesticides. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 50. https://doi.org/10.1080/03601234.2015.1000178

    Article  CAS  Google Scholar 

  108. Maia ML, Correia-Sá L, Sousa S et al (2017) Organochlorine pesticides in seafood: occurrence and risk assessment. In: Advances in medicine and biology, pp 175–222

    Google Scholar 

  109. Ferrante MC, Cirillo T, Naso B et al (2007) Polychlorinated biphenyls and organochlorine pesticides in seafood from the Gulf of Naples (Italy). J Food Prot 70:706–715

    Article  CAS  Google Scholar 

  110. Kafkas E, Daglioglu N, Yarpuz-Bozdogan N, Zarifikhosroshahi M (2019) Pesticide analysis techniques, limitations, and applications. In: Wani KA, Mamta (eds) Handbook of research on the adverse effects of pesticide pollution in aquatic ecosystems. IGI Global, Hershey, PA, USA, pp 301–317

    Google Scholar 

  111. Fernandes VC, Pestana D, Monteiro R et al (2012) Optimization and validation of organochlorine compounds in adipose tissue by SPE-gas chromatography. Biomed Chromatogr 26:1494–1501. https://doi.org/10.1002/bmc.2723

    Article  CAS  Google Scholar 

  112. Mostafalou S, Abdollahi M (2017) Pesticides: an update of human exposure and toxicity. Arch Toxicol 91:549–599. https://doi.org/10.1007/s00204-016-1849-x

    Article  CAS  Google Scholar 

  113. Starek-Świechowicz B, Budziszewska B, Starek A (2017) Hexachlorobenzene as a persistent organic pollutant: toxicity and molecular mechanism of action. Pharmacol Rep 69:1232–1239. https://doi.org/10.1016/j.pharep.2017.06.013

    Article  CAS  Google Scholar 

  114. Xiao X, Clark JM, Park Y (2017) Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem Toxicol 105:456–474. https://doi.org/10.1016/j.fct.2017.05.003

    Article  CAS  Google Scholar 

  115. Bragança I, Domingues V, Lemos P, Delerue-Matos C (2016) Biodegradation of pyrethroid pesticides. In: Soil remediation. CRC Press, pp 59–74

    Google Scholar 

  116. Bragança I, Lemos PC, Delerue-Matos C, Domingues VF (2019) Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils. Environ Sci Pollut Res 26:2987–2997. https://doi.org/10.1007/s11356-018-3690-7

    Article  CAS  Google Scholar 

  117. Tang W, Wang D, Wang J et al (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

    Article  CAS  Google Scholar 

  118. Ye J, Zhao M, Liu J, Liu W (2010) Enantioselectivity in environmental risk assessment of modern chiral pesticides. Environ Pollut 158:2371–2383. https://doi.org/10.1016/j.envpol.2010.03.014

    Article  CAS  Google Scholar 

  119. Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Insecticides—advances in integrated pest management. InTech

    Google Scholar 

  120. Feo ML, Eljarrat E, Barceló D, Barceló D (2010) Determination of pyrethroid insecticides in environmental samples. TrAC Trends Anal Chem 29:692–705. https://doi.org/10.1016/j.trac.2010.03.011

    Article  CAS  Google Scholar 

  121. Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923. https://doi.org/10.1016/j.etap.2015.09.023

    Article  CAS  Google Scholar 

  122. Domingues V, Cabral M, Alves A, Delerue-Matos C (2009) Use and reuse of SPE disks for the determination of pyrethroids in water by GC-ECD. Anal Lett 42:706–726. https://doi.org/10.1080/00032710902721949

    Article  CAS  Google Scholar 

  123. Ensley SM (2012) Pyrethrins and pyrethroids. In: Veterinary toxicology. Elsevier, pp 591–595

    Google Scholar 

  124. Ensley SM (2018) Pyrethrins and pyrethroids. In: Veterinary toxicology. Elsevier, pp 515–520

    Google Scholar 

  125. Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C (2012) Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 210:155–168. https://doi.org/10.1016/j.toxlet.2011.10.007

    Article  CAS  Google Scholar 

  126. Saillenfait A-M, Ndiaye D, Sabaté J-P (2015) Pyrethroids: exposure and health effects—an update. Int J Hyg Environ Health 218:281–292. https://doi.org/10.1016/j.ijheh.2015.01.002

    Article  CAS  Google Scholar 

  127. Tyler CR, Beresford N, van der Woning M et al (2000) Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem 19:801–809. https://doi.org/10.1002/etc.5620190404

    Article  CAS  Google Scholar 

  128. Yoo M, Lim Y-H, Kim T et al (2016) Association between urinary 3-phenoxybenzoic acid and body mass index in Korean adults: 1st Korean National Environmental Health Survey. Ann Occup Environ Med 28:2. https://doi.org/10.1186/s40557-015-0079-7

    Article  Google Scholar 

  129. Burns CJ, Pastoor TP (2018) Pyrethroid epidemiology: a quality-based review. Crit Rev Toxicol 48:297–311. https://doi.org/10.1080/10408444.2017.1423463

    Article  CAS  Google Scholar 

  130. Tietze LF, Schützenmeister N, Grube A et al (2012) Synthesis of spinosyn analogues for modern crop protection. Eur J Org Chem 2012:5748–5756. https://doi.org/10.1002/ejoc.201200600

    Article  CAS  Google Scholar 

  131. Bacci L, Lupi D, Savoldelli S, Rossaro B (2016) A review of spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J Entomol Acarol Res 48:40. https://doi.org/10.4081/jear.2016.5653

    Article  Google Scholar 

  132. Huang K, Xia L, Zhang Y et al (2009) Recent advances in the biochemistry of spinosyns. Appl Microbiol Biotechnol 82:13–23. https://doi.org/10.1007/s00253-008-1784-8

    Article  CAS  Google Scholar 

  133. Biondi A, Mommaerts V, Smagghe G et al (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536. https://doi.org/10.1002/ps.3396

    Article  CAS  Google Scholar 

  134. Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot (Tokyo) 63:101–111. https://doi.org/10.1038/ja.2010.5

    Article  CAS  Google Scholar 

  135. Zhao C, Huang Y, Guo C et al (2017) Heterologous expression of spinosyn biosynthetic gene cluster in Streptomyces species is dependent on the expression of rhamnose biosynthesis genes. J Mol Microbiol Biotechnol 27:190–198. https://doi.org/10.1159/000477543

    Article  CAS  Google Scholar 

  136. Su T, Lin J, Lin-Tan D-T et al (2011) Human poisoning with spinosad and flonicamid insecticides. Hum Exp Toxicol 30:1878–1881. https://doi.org/10.1177/0960327111401639

    Article  CAS  Google Scholar 

  137. Rossi M, Rotilio D (1997) Analysis of carbamate pesticides by micellar electrokinetic chromatography. HRC J High Resolut Chromatogr 20:265–269. https://doi.org/10.1002/jhrc.1240200505

    Article  CAS  Google Scholar 

  138. Gupta RC (2014) Carbamate pesticides, 3rd edn. Elsevier

    Google Scholar 

  139. Machemer LH, Pickel M (1994) Chapter 16. Carbamate herbicide and fungicides. Toxicology 91:105–109. https://doi.org/10.1016/0300-483X(94)90249-6

    Article  CAS  Google Scholar 

  140. Moreland DE (1999) Biochemical mechanisms of action of herbicides and the impact of biotechnology on the development of herbicides. J Pestic Sci 24:299–307. https://doi.org/10.1584/jpestics.24.299

    Article  CAS  Google Scholar 

  141. Morais S, Dias E, Pereira MDL (2012) Carbamates: human exposure and health effects. Impact Pestic 21–38

    Google Scholar 

  142. Matsumura F (1985) Toxicology of insecticides. Springer US, Boston, MA

    Book  Google Scholar 

  143. Gupta RC, Sachana M, Mukherjee IM et al (2018) Organophosphates and carbamates, 3rd edn. Elsevier Inc.

    Google Scholar 

  144. Gallo MA, Lawryk NJ (1991) Organic phosphorus pesticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, New York

    Google Scholar 

  145. Herrero-Hernández E, Andrades MS, Álvarez-Martín A et al (2013) Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J Hydrol 486:234–245. https://doi.org/10.1016/j.jhydrol.2013.01.025

    Article  CAS  Google Scholar 

  146. Vermeire T, McPhail R, Waters M. Organophosphorous pesticides in the environment. Toxicology advisory centre national institute of public health and the environment, the Netherlands and national health and environmental effects research laboratory office of research and development environmental protection agency, USA  

    Google Scholar 

  147. Beyond Pesticides (2015) Health effects of 30 commonly used lawn pesticides. Archived (PDF) from the original on 2011-11-12

    Google Scholar 

  148. Centers for disease control and prevention organophosphates. https://www.cdc.gov/nceh/clusters/Fallon/organophosfaq.htm. Accessed 23 Jan 2019

  149. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607. https://doi.org/10.1016/S0140-6736(07)61202-1

    Article  CAS  Google Scholar 

  150. Jokanović M, Kosanović M (2010) Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ Toxicol Pharmacol 29:195–201. https://doi.org/10.1016/j.etap.2010.01.006

    Article  CAS  Google Scholar 

  151. Van Bruggen AHC, He MM, Shin K et al (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616–617:255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309

    Article  CAS  Google Scholar 

  152. Sidoli P, Baran N, Angulo-Jaramillo R (2016) Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environ Sci Pollut Res 23:5733–5742. https://doi.org/10.1007/s11356-015-5796-5

    Article  CAS  Google Scholar 

  153. Battaglin WA, Meyer MT, Kuivila KM, Dietze JE (2014) Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. JAWRA J Am Water Resour Assoc 50:275–290. https://doi.org/10.1111/jawr.12159

    Article  CAS  Google Scholar 

  154. Prasad S, Srivastava S, Singh M, Shukla Y (2009) Clastogenic effects of glyphosate in bone marrow cells of Swiss albino mice. J Toxicol 2009:1–6. https://doi.org/10.1155/2009/308985

    Article  CAS  Google Scholar 

  155. Baran MJ, Cibiński M (2014) Glyphosate-based phospho-organic herbicides—an outline of action, metabolism and the selected effects on humans and other organisms. Arch Physiother Glob Res 18:35–45. https://doi.org/10.15442/apgr.19.2.10

    Article  Google Scholar 

  156. Zarzycki PK, Włodarczyk E, Baran MJ (2009) Determination of endocrine disrupting compounds using temperature-dependent inclusion chromatography. J Chromatogr A 1216:7612–7622. https://doi.org/10.1016/j.chroma.2009.03.066

    Article  CAS  Google Scholar 

  157. Worthing CR, Walker SB, British Crop Protection Council (1983) The pesticide manual: a world compendium, 7th edn. British Crop Protection Council, Croydon

    Google Scholar 

  158. Donn G, Köcher H (2002) Inhibitors of glutamine synthetase. In: Herbicide classes in development. Springer, Berlin, Heidelberg, pp 87–101

    Chapter  Google Scholar 

  159. Nagatomi Y, Yoshioka T, Yanagisawa M et al (2013) Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Biosci Biotechnol Biochem 77:2218–2221. https://doi.org/10.1271/bbb.130433

    Article  CAS  Google Scholar 

  160. Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag Sci 61:211–218. https://doi.org/10.1002/ps.1024

    Article  CAS  Google Scholar 

  161. Duke SO (2014) Biotechnology: herbicide-resistant crops. In: Encyclopedia of agriculture and food systems. Elsevier, pp 94–116

    Google Scholar 

  162. Ebert E, Leist K-H, Mayer D (1990) Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol 28:339–349. https://doi.org/10.1016/0278-6915(90)90108-Y

    Article  CAS  Google Scholar 

  163. Hack R, Ebert E, Ehling G, Leist K-H (1994) Glufosinate ammonium—some aspects of its mode of action in mammals. Food Chem Toxicol 32:461–470. https://doi.org/10.1016/0278-6915(94)90043-4

    Article  CAS  Google Scholar 

  164. Watanabe T, Sano T (1998) Neurological effects of glufosinate poisoning with a brief review. Hum Exp Toxicol 17:35–39. https://doi.org/10.1177/096032719801700106

    Article  CAS  Google Scholar 

  165. Watanabe T (1997) Apoptosis induced by glufosinate ammonium in the neuroepithelium of developing mouse embryos in culture. Neurosci Lett 222:17–20. https://doi.org/10.1016/S0304-3940(97)13330-4

    Article  CAS  Google Scholar 

  166. Morais S, Correia M, Domingues V, Delerue-Matos C (2011) Urea pesticides. In: Pesticides—strategies for pesticides analysis. InTech

    Google Scholar 

  167. Lányi K, Dinya Z (2005) Photodegradation study for assessing the environmental fate of some triazine-, urea- and thiolcarbamate-type herbicides. Microchem J 80:79–87. https://doi.org/10.1016/j.microc.2004.12.001

    Article  CAS  Google Scholar 

  168. Niessen WMA (2010) Group-specific fragmentation of pesticides and related compounds in liquid chromatography–tandem mass spectrometry. J Chromatogr A 1217:4061–4070. https://doi.org/10.1016/j.chroma.2009.09.058

    Article  CAS  Google Scholar 

  169. Liu J (2010) Phenylurea herbicides. In: Hayes’ handbook of pesticide toxicology. Elsevier, pp 1725–1731

    Google Scholar 

  170. Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem 46:309–324. https://doi.org/10.1016/j.plaphy.2007.12.004

    Article  CAS  Google Scholar 

  171. Yang M, Hong K, Li X et al (2017) Freezing temperature controlled deep eutectic solvent dispersive liquid–liquid microextraction based on solidification of floating organic droplets for rapid determination of benzoylureas residual in water samples with assistance of metallic salt. RSC Adv 7:56528–56536. https://doi.org/10.1039/C7RA11030H

    Article  CAS  Google Scholar 

  172. Matsumura F (2010) Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: a review on the status of research activities in the past, the present and the future prospects. Pestic Biochem Physiol 97:133–139. https://doi.org/10.1016/j.pestbp.2009.10.001

    Article  CAS  Google Scholar 

  173. Bolte M (2004) Environmental fate of pollutants: example of phenylurea pesticides. Actual Chim 33–39

    Google Scholar 

  174. Huovinen M, Loikkanen J, Naarala J, Vähäkangas K (2015) Toxicity of diuron in human cancer cells. Toxicol In Vitro 29:1577–1586. https://doi.org/10.1016/j.tiv.2015.06.013

    Article  CAS  Google Scholar 

  175. Mohammed AM, Karttunen V, Huuskonen P et al (2018) Transplacental transfer and metabolism of diuron in human placenta. Toxicol Lett 295:307–313. https://doi.org/10.1016/j.toxlet.2018.07.012

    Article  CAS  Google Scholar 

  176. Huang Q, Wu X, Yu X et al (2015) Comparison of the cytotoxic impact of chlorfluazuron on selected insect and human cell lines. Environ Toxicol Chem 34:1675–1682. https://doi.org/10.1002/etc.2969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Sousa, M. L. Maia, and V. C. Fernandes are grateful to FCT (Fundação para a Ciência e a Tecnologia) for the Ph.D. grant (SFRH/BD/137516/2018), Ph.D. grant (SFRH/BD/128817/2017) and Postdoc grant (SFRH/BPD/109153/2015), respectively. This work received financial support from the Fundação para a Ciência e a Tecnologia (FCT)/the Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds (UID/QUI/50006/2019). The authors would also like to thank the EU and FCT for funding through the projects: FOODnanoHEALTH—Qualidade e Segurança Alimentar—uma abordagem (nano)tecnológica (Portugal2020, Norte-01-0145-FEDER-000011). The authors would also like to thank the EU and FCT/UEFISCDI, Romania/The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), Sweden for funding, in the frame of the collaborative international consortium REWATER financed under the ERA-NET Cofund WaterWorks2015 Call. This ERA-NET is an integral part of the 2016 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Domingues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sousa, S. et al. (2020). Chemistry and Toxicology Behind Insecticides and Herbicides. In: K. R., R., Thomas, S., Volova, T., K., J. (eds) Controlled Release of Pesticides for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23396-9_3

Download citation

Publish with us

Policies and ethics