Technical Premise

  • Xin Wei
  • Liang Zhou
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


In this chapter, we briefly describe technical premise on multimedia QoE evaluation. Firstly, we present some mainstream definitions about QoE and introduce how to quantify multimedia QoE. Then, we investigate and classify the influencing factors of multimedia QoE from three aspects. Moreover, we introduce existing mainstream multimedia QoE modeling and prediction algorithms based on machine learning. Finally, we give challenges of multimedia QoE evaluation research.


  1. 1.
    Quality of experience.
  2. 2.
    ITU Telecommunication Standardization Sector and OF ITU (2007) Definition of quality of experience (QoE). ITU-T Recommendation P.10/G.100Google Scholar
  3. 3.
    European Telecommunication Standards Institute TC HF (Human Factors) (2010) Quality of Experience (QoE) requirements for real-time communication services. Technical report, European Telecommunication Standards InstituteGoogle Scholar
  4. 4.
    Callet PL, Moller S, Perkis A (2013) Qualinet white paper on definitions of quality of experience (QoE)Google Scholar
  5. 5.
    Chen Y, Wu K, Zhang Q (2015) From QoS to QoE: a tutorial on video quality assessment. IEEE Commun Surv Tut 17(2):1126–1165CrossRefGoogle Scholar
  6. 6.
    Menkovski V, Oredope A, Liotta A, Sánchez AC (2009) Predicting quality of experience in multimedia streaming. In: Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia, Kuala Lumpur, Dec 14–16, pp 52–59Google Scholar
  7. 7.
    ITU-T Rec (2006) P. 800.1, mean opinion score (MOS) terminology. International Telecommunication UnionGoogle Scholar
  8. 8.
    Chen KT, Wu CC, Chang YC, Lei CL (2009) A crowd source-able QoE evaluation framework for multimedia content. In: Proceedings of the 17th ACM international conference on multimedia, Beijing, Oct 19–24, pp 491–500Google Scholar
  9. 9.
    Lin C, Hu J, Kong X (2012) Survey on models and evaluation of quality of experience. Chin J Comput 35(1):1–15CrossRefGoogle Scholar
  10. 10.
    Skorin-Kapov L, Varela M, Hossfeld T, Chen KT (2018) A survey of emerging concepts and challenges for QoE management of multimedia services. ACM Trans Multimed Comput Commun Appl 14(2s):1–29Google Scholar
  11. 11.
    Zhao T, Liu Q, Chen CW (2017) QoE in video transmission: a user experience-driven strategy. IEEE Commun Surv Tut 19(1):285–302CrossRefGoogle Scholar
  12. 12.
    Ou YF, Xue Y, Wang Y (2014) Q-star: a perceptual video quality model considering impact of spatial, temporal, and amplitude resolutions. IEEE Trans Image Process 23(6):2473–2486MathSciNetCrossRefGoogle Scholar
  13. 13.
    Thoma H, de-Frutos-López M, Auer J (2013) Chroma subsampling for HDR video with improved subjective quality. In: Picture Coding Symposium, San Jose, CA, Dec 8–11, pp 345–348Google Scholar
  14. 14.
    Lebreton P, Raake A, Barkowsky M, Le Callet P (2012) Evaluating depth perception of 3D stereoscopic videos. IEEE J Sel Top Sign Proces 6(6):710–720CrossRefGoogle Scholar
  15. 15.
    Zinner T, Hohlfeld O, Abboud O, Hossfeld T (2010) Impact of frame rate and resolution on objective QoE metrics. In: International workshop on quality of multimedia experience, Trondheim, June 21–23, pp 1–8Google Scholar
  16. 16.
    Buchinger S, Hlavacs H (2006) Subjective quality of mobile MPEG-4 videos with different frame rates. J Mob Multimed 1(4):327–341Google Scholar
  17. 17.
    Zeina S, Conrad BA (2019) Large-scale study of perceptual video quality. IEEE Trans Image Process 28(2):612–627MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wang Y, Li P, Jiao L, Su Z, Cheng N, Shen XS, Zhang P (2017) A data-driven architecture for personalized QoE management in 5G wireless networks. IEEE Wirel Commun 24(1):102–110CrossRefGoogle Scholar
  19. 19.
    Sackl A, Casas P, Schatz R, Janowski L, Irmer R (2015) Quantifying the impact of network bandwidth fluctuations and outages on Web QoE. In: International Workshop on Quality of Multimedia Experience, Pylos, May 26–29, pp 1–6Google Scholar
  20. 20.
    Zhou L (2017) QoE-driven delay announcement for cloud mobile media. IEEE Trans Circuits Syst Video Technol 27(1):84–94CrossRefGoogle Scholar
  21. 21.
    Aguilera N, Bustos J, Lalanne F (2016) Adkintun mobile: study of relation between QoS and QoE in mobile networks. IEEE Lat Am Trans 14(6):2770–2772CrossRefGoogle Scholar
  22. 22.
    Xu S, Wang X, Huang M (2018) Modular and deep QoE/QoS mapping for multimedia services over satellite networks. Int J Commun Syst 31(17):e3793CrossRefGoogle Scholar
  23. 23.
    Sidaty NO, Larabi MC, Saadane A (2014) Influence of video resolution, viewing device and audio quality on perceived multimedia quality for steaming applications. In: 5th European workshop on visual information processing, Paris, Dec 10–12, pp 1–6Google Scholar
  24. 24.
    Floris A, Atzori L, Ginesu G (2015) The impact of interactivity on the QoE: a preliminary analysis. In: IEEE international conference on communication workshop, London, June 8–12, pp 1711–1716Google Scholar
  25. 25.
    Vucic D, Skorin-Kapov L (2015) The impact of mobile device factors on QoE for multi-party video conferencing via WebRTC. In: 13th international conference on telecommunications (Contel), Inffeldgasse 12, Graz, July 13–15, pp 1–8Google Scholar
  26. 26.
    Van den Broeck W, Jacobs A, Staelens N (2012) Integrating the everyday-life context in subjective video quality experiments. In: Fourth international workshop on quality of multimedia experience, Melbourne, VIC, July 5–7, pp 19–24Google Scholar
  27. 27.
    Frohlich P, Egger S, Schatz R, Muhlegger M, Masuch K, Gardlo B (2012) QoE in 10 seconds: are short video clip lengths sufficient for quality of experience assessment? In: Fourth international workshop on quality of multimedia experience, Melbourne, VIC, July 5–7, pp 242–247Google Scholar
  28. 28.
    De Pessemier T, Martens L, Joseph W (2013) Modeling subjective quality evaluations for mobile video watching in a living lab context. In: IEEE international symposium on broadband multimedia systems and broadcasting, London, June 4–7, pp 1–5Google Scholar
  29. 29.
    Sackl A, Zwickl P, Reichl P (2013) The trouble with choice: an empirical study to investigate the influence of charging strategies and content selection on QoE. In: Proceedings of the 9th international conference on network and service management, Zurich, Oct 14–18, pp 298–303Google Scholar
  30. 30.
    Schmitt M, Redi J, Bulterman D, Cesar PS (2018) Towards individual QoE for multiparty videoconferencing. IEEE Trans Multimedia 20(7):1781–1795CrossRefGoogle Scholar
  31. 31.
    Tasaka S (2017) Bayesian hierarchical regression models for QoE estimation and prediction in audiovisual communications. IEEE Trans Multimedia 19(6):1195–1208CrossRefGoogle Scholar
  32. 32.
    Song J, Yang F, Zhou Y, Wan S, Wu HR (2016) QoE evaluation of multimedia services based on audiovisual quality and user interest. IEEE Trans Multimedia 18(3):444–457CrossRefGoogle Scholar
  33. 33.
    Arndt S, Radun J, Antons JN, Sebastian M (2014) Using eye-tracking and correlates of brain activity to predict quality scores. In: 6th international workshop on quality of multimedia experience, Singapore, Sep 18–20, pp 281–285Google Scholar
  34. 34.
    Zhu Y, Heynderickx I, Redi JA (2015) Understanding the role of social context and user factors in video quality of experience. Comput Hum Behav 49:412–426CrossRefGoogle Scholar
  35. 35.
    Yue T, Wang H, Cheng S (2018) Learning from users: a data-driven method of QoE evaluation for internet video. Multimed Tools Appl 77(20):27269–27300CrossRefGoogle Scholar
  36. 36.
    Mitra K, Zaslavsky A, Ahlund C (2015) Context-aware QoE modelling, measurement, and prediction in mobile computing systems. IEEE Trans Mob Comput 14(5):920–936CrossRefGoogle Scholar
  37. 37.
    Xu Y, Xiao Z, Feng H, Yang T, Hu B, Zhou Y (2017) Modeling buffer starvations of video streaming in cellular networks with large-scale measurement of user behavior. IEEE Trans Mob Comput 16(8):2228–2245CrossRefGoogle Scholar
  38. 38.
    Huang R, Wei X, Zhou L, Lv C, Meng H, Jin J (2018) A survey of data-driven approach on multimedia QoE evaluation. Front Comp Sci 12(6):1060–1075CrossRefGoogle Scholar
  39. 39.
    Balachandran A, Sekar V, Akella A, Seshan S, Stoica I, Hui Z (2013) Developing a predictive model of quality of experience for internet video. In: ACM conference on applications, technologies, architectures, and protocols for computer communication, Hong Kong, Aug 12–16, pp 339–350Google Scholar
  40. 40.
    Zhang Y, Yue T, Wang H, Wei A (2014) Predicting the quality of experience for Internet video with fuzzy decision tree. In: IEEE 17th international conference on computational science and engineering, Chengdu, Dec 19–21, pp 1181–1187Google Scholar
  41. 41.
    Menkovski V, Exarchakos G, Liotta A (2010) Online QoE prediction. In: Second International Workshop on Quality of Multimedia Experience (QoMEX), Trondheim, June 21–23, pp 118–123Google Scholar
  42. 42.
    Chen H, Yu X, Xie L (2013) End-to-end quality adaptation scheme based on QoE prediction for video streaming service in LTE networks. In: 11th international symposium and workshops on modeling and optimization in mobile, ad hoc and wireless networks, Tsukuba Science City, May 13–17, pp 627–633Google Scholar
  43. 43.
    Qian L, Chen H, Xie L (2015) SVM-based QoE estimation model for video streaming service over wireless networks. In: International conference on wireless communications & signal processing. Nanjing, Oct 15–17, pp 1–6Google Scholar
  44. 44.
    Wang B, Zou D, Ding R (2011) Support vector regression based video quality prediction. In: IEEE international symposium on multimedia, Dana point, CA, Dec 5–7, pp 476–481Google Scholar
  45. 45.
    Zheng K, Zhang X, Zheng Q, Xiang W, Hanzo L (2015) Quality-of-experience assessment and its application to video services in LTE networks. IEEE Wirel Commun 22(1):70–78CrossRefGoogle Scholar
  46. 46.
    Kang Y, Chen H, Xie L (2013) An artificial-neural-network-based QoE estimation model for Video streaming over wireless networks. In: IEEE/CIC International Conference on Communications in China, Xi’an, Aug 12–14, pp 264–269Google Scholar
  47. 47.
    Mitra K, Zaslavsky A, Âhlund C (2015) Context-aware QoE modelling, measurement, and prediction in mobile computing systems. IEEE Trans Mob Comput 14(5):920–936CrossRefGoogle Scholar
  48. 48.
    Mitra K, Zaslavsky A, Âhlund C (2011) Dynamic Bayesian networks for sequential quality of experience modelling and measurement. In: Smart Spaces and Next Generation Wired/Wireless Networking. Springer, Berlin, pp 135–146CrossRefGoogle Scholar
  49. 49.
    Mian AU, Hu Z, Tian H (2013) Estimation of in-service quality of experience for peer-to-peer live video streaming systems using a user-centric and context-aware approach based on Bayesian networks. Trans Emerg Telecommun Technol 24(3):280–287CrossRefGoogle Scholar
  50. 50.
    Chen M, Hao Y, Mao S, Wu D, Zhou Y (2016) User intent-oriented video QoE with emotion detection networking. In: IEEE Global Communications Conference, Washington, Dec 4–8, pp 1–6Google Scholar
  51. 51.
    Sun Y, Yin X, Wang N, Jiang J, Sekar V, Jin Y, Sinopoli B (2015) Analyzing TCP throughput stability and predictability with implications for adaptive video streaming. Preprint. arXiv:1506.05541Google Scholar
  52. 52.
    Tasaka S (2017) Bayesian hierarchical regression models for QoE estimation and prediction in audiovisual communications. IEEE Trans Multimedia 19(6):1195–1208CrossRefGoogle Scholar
  53. 53.
    Tasaka, S (2019) Bayesian categorical modeling of multidimensional QoE in haptic-audiovisual communications. In: IEEE international conference on communications, Shanghai, May 20–22, pp 1–6Google Scholar
  54. 54.
    Charonyktakis P, Plakia M, Tsamardinos I, Papadopouli M (2016) On user-centric modular QoE prediction for VoIP based on machine-learning algorithms. IEEE Trans Mobile Comput 15(6):1443–1456CrossRefGoogle Scholar
  55. 55.
    He X, Wang K, Huang H, Liu B (2018) QoE-driven big data architecture for smart city. IEEE Commun Mag 56(2):88–93CrossRefGoogle Scholar
  56. 56.
    Bampis CG, Li Z, Katsavounidis I, Bovik AC (2018) Recurrent and dynamic models for predicting streaming video quality of experience. IEEE Trans. Image Process 27(7):3316–3331MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xin Wei
    • 1
  • Liang Zhou
    • 1
  1. 1.Nanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations