Large Palaeomeanders in Europe: Distribution, Formation Process, Age, Environments and Significance

  • Jef VandenbergheEmail author
  • Aleksey Sidorchuk
Part of the Geography of the Physical Environment book series (GEOPHY)


Large palaeomeanders represent a characteristic morphological aspect of many valley floors worldwide. Although the present overview is limited to the European territory, a review of extent, age, geometry and significance in terms of former discharge conditions of large palaeomeanders is timely. Their large size was a function of unusually high river run-off that resulted from specific climate, topography, vegetation and frozen soil conditions. Therefore, their ages and appearances may be variable as a function of geographical position. In addition, the factors that caused the large size of these meanders are discussed. The dimensions of palaeomeanders may be used for discharge reconstructions, but this should be applied with caution, taking into account the different factors that caused the large size of these meanders.


Large palaeomeanders River discharge Late Pleniglacial Lateglacial 



Many thanks go to Dr. C. Kasse for critical comments to this paper.


  1. Ackers P (1982) Meandering channels and the influence of bed material. In: Hey RD, Bathurst JS, Thorne RC (eds) Gravel bed rivers. Wiley, Chichester, pp 389–415Google Scholar
  2. Antoine P (1997) Modifications des systèmes fluviatiles à la transition Pléniglaciaire-Tardiglaciaire et à l’Holocène: l’exemple du bassin de la Somme (Nord de la France). Géogr Phys Quat 51:93–106Google Scholar
  3. Antoine P, Munaut AV, Limondin-Lozouet N et al (2003) Response of the Selle River to climatic modifications during the Lateglacial and early Holocene (Somme basin-northern France). Quat Sci Rev 22:2061–2076CrossRefGoogle Scholar
  4. Bertran P, Frouin M, Mercier N et al (2013) Architecture of the lower terraces and evolution of the Dordogne River at Bergerac (south-west France) during the last glacial–interglacial cycle. J Quat Sci 28(6):605–616CrossRefGoogle Scholar
  5. Bohncke S, Vandenberghe J (1991) Palaeohydrological development in the Southern Netherlands during the last 15000 years. In: Starkel L, Gregory K, Thornes J (eds) Temperate palaeohydrology. Wiley, Chichester, pp 253–281Google Scholar
  6. Bohncke S, Kasse C, Vandenberghe J (1995) Climate induced environmental changes during the Vistulian Lateglacial at Zabinko, Poland. Quaest Geogr 4:43–64Google Scholar
  7. Borisova O, Sidorchuk A, Panin A (2006) Palaeohydrology of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data. CATENA 66:53–73CrossRefGoogle Scholar
  8. Castanet C (2008) La Loire en Val d’Orléans. Dynamiques fluviales et socio-environnementales durant les derniers 30000 ans: de l’hydrosystème à l’anthroposystème. Ph.D. Thesis, Université Paris 1Google Scholar
  9. Davis WM (1913) Meandering Valleys and Underfit Rivers. Ann Ass Am Geogr 3:3–28CrossRefGoogle Scholar
  10. De Smedt P (1973) Paleogeografie en Kwartair-geologie van het confluentiegebied Dijle-Demer. Acta Geograph Lovan 11:1–141Google Scholar
  11. Deschodt L, Salvador PG, Boulen M (2004) Formations sédimentaires et évolution de la vallée de la Deûle depuis le Pléniglaciaire supérieur à Houplin-Ancoisne (Nord de la France). Quaternaire 15:269–298CrossRefGoogle Scholar
  12. Dokuchaev VV (1878) The Ways of the River Valleys Formation at the European Russia. Dermakov Publ, St.-Petersburg (in Russian)Google Scholar
  13. Dury GH (1954) Contribution to a general theory of meandering valleys. Am J Sci 252(4):193–224CrossRefGoogle Scholar
  14. Dury GH (1965) Theoretical implications of underfit streams. US Geological Survey Professional Paper 452-CGoogle Scholar
  15. Dury GH (1976) Discharge prediction, present and former, from channel dimensions. J Hydrol 30:219–245CrossRefGoogle Scholar
  16. Erkens G, Hoffmann T, Gerlach R et al (2011) Complex fluvial response to Lateglacial and Holocene allogenic forcing in the Lower Rhine Valley (Germany). Quat Sci Rev 30:611–627CrossRefGoogle Scholar
  17. Feurdean A et al (2014) Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8 ka. Quat Sc Rev 106:206–224CrossRefGoogle Scholar
  18. Gabris G, Nador A (2007) Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quat Sci Rev 26:2758–2782CrossRefGoogle Scholar
  19. Gabris G, Horvath E, Novothny A et al (2012) Fluvial and Aeolian landscape evolution in Hungary-results of the last 20 years research. Neth J Geosci 91:111–128Google Scholar
  20. Gonera P, Kozarski S (1987) River channel changes and rough paleodischarge estimates for the Warta river, West-Central Poland. Geogr Ann 69A:163–171CrossRefGoogle Scholar
  21. Gregory KJ (1976) Drainage networks and climate. In: Derbyshire E (ed) Geomorphology and climate. Wiley, London, pp 289–318Google Scholar
  22. Hoek WZ (1997) Late-Glacial and early Holocene climatic events and chronology of vegetation development in the Netherlands. Veg Hist Archaeobot 6:197–213CrossRefGoogle Scholar
  23. Huang HQ, Nanson GC (1997) Vegetation and channel variation; a case study of four small streams in southeastern Australia. Geomorphology 18:237–249CrossRefGoogle Scholar
  24. Huisink M (1997) Late Glacial sedimentological and morphological changes in a lowland river as a response to climatic change: the Maas, The Netherlands. J Quat Sci 12:209–223CrossRefGoogle Scholar
  25. Huisink M (2000) Changing river styles in response to Weichselian climate changes in the Vecht valley, eastern Netherlands. Sed Geol 133:115–134CrossRefGoogle Scholar
  26. Janssens MM, Kasse C, Bohncke SJP et al (2012) Climate-driven fluvial development and valley abandonment at the last glacial-interglacial transition (Oude Ijssel-Rhine, Germany). Neth J Geosci 91:37–62Google Scholar
  27. Kaiser K, Lorenz S, Germer S et al (2012) Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact—an overview. E&G Quat Sci J 61(2):104–132Google Scholar
  28. Kalicki T (2006) Reflection of climatic changes and human activity and their role in the Holocene evolution of Central European valleys. Prace Geogr 204:5–348Google Scholar
  29. Kasse C (1997) Cold-climate aeolian sand-sheet formation in north-western Europe (c. 14–12.4 ka): a response to permafrost degradation and increased aridity. Permafr Perigl Proc 8:295–311CrossRefGoogle Scholar
  30. Kasse C (1998) Depositional model for cold-climate tundra rivers. In: Benito G, Baker VR, Gregory KJ (eds) Palaeohydrology and environmental change. Wiley, Chichester, pp 83–97Google Scholar
  31. Kasse C (2002) Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Prog Phys Geog 26:507–532CrossRefGoogle Scholar
  32. Kasse C, Vandenberghe J, Bohncke S (1995) Climatic change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. In: Frenzel B, Vandenberghe J, Kasse C et al (eds) European river activity and climatic change during the Lateglacial and early Holocene. Paläoklimaforschung 14: 123–150Google Scholar
  33. Kasse C, Huisink M, Hoek WZ et al (2000) Comment: Fluvial incision and channel downcutting as a response to Late-glacial and Early Holocene climate change: the lower reach of the River Meuse (Maas), The Netherlands. J Quat Sci 15:91–94CrossRefGoogle Scholar
  34. Kasse C, Hoek WZ, Bohncke SJP et al (2005) Lateglacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. J Quat Sci 20:377–394CrossRefGoogle Scholar
  35. Kasse C, Bohncke SJP, Vandenberghe J et al (2010) Fluvial style changes during the last glacial—interglacial transition in the middle Tisza valley (Hungary). Proc Geol Assoc 121:180–194CrossRefGoogle Scholar
  36. Kemp J, Pietsch T, Gontz A et al (2017) Lacustrine-fluvial interactions in Australia’s Riverine Plains. Quat Sci Rev 166:352–362CrossRefGoogle Scholar
  37. Kiden P (1991) The Lateglacial and Holocene evolution of the Middle and Lower River Scheldt, Belgium. In: Starkel L, Gregory K, Thornes J (eds) Temperate palaeohydrology. Wiley, Chichester, pp 283–299Google Scholar
  38. Kozarski S (1983) River channel changes in the middle reach of the Warta valley, Great Poland Lowland. Quat Stud Poland 4:159–169Google Scholar
  39. Kozarski S (1991) Warta—a case study of a lowland river. In: Starkel L, Gregory KJ, Thornes JB (eds) Temperate palaeohydrology. Wiley, New York, pp 189–215Google Scholar
  40. Kozarski S, Gonera P, Antczak B (1988) Valley floor development and palaeohydrological changes: the Late Vistulian and Holocene history of the Warta River (Poland). In: Lang C, Schlüchter C (eds) Lake, mire and river environments. Balkema, Rotterdam, pp 185–203Google Scholar
  41. Krupa J (2015) Natural and anthropogenic channel pattern changes in the mid-mountain valley during the Late Glacial and Holocene, Polish Uplands. Quat Int 370:55–65CrossRefGoogle Scholar
  42. Leigh DS (2006) Terminal Pleistocene braided to meandering transition in rivers of the Southeastern USA. CATENA 66:155–160CrossRefGoogle Scholar
  43. Leopold LB, Maddock T (1953) The Hydraulic Geometry of Stream Channels and Some Physiographic Implications. US Geological Survey Professional Paper 252Google Scholar
  44. Leopold LB, Wolman MG (1957) River channel patterns: braided, meandering and straight. US Geological Survey Professional Paper 282-BGoogle Scholar
  45. Leopold LB, Wolman MG (1960) River meanders. Bull Geol Soc Amer 71:769–794CrossRefGoogle Scholar
  46. Lipps S, Caspers G (1990) Spätglazial und Holozän auf der Stolzenauer Terrasse im Mittelwesertal. Eiszeitalter u Gegenwart 40:111–119Google Scholar
  47. Mol J, Vandenberghe J, Kasse C (2000) River response to variations of periglacial climate. Geomorphology 33:131–148CrossRefGoogle Scholar
  48. Morin E, Macaire JJ, Hinschberger F et al (2011) Spatio-temporal evolution of the Choisille River (southern Parisian Basin, France) during the Weichselian and the Holocene as a record of climate trend and human activity in north-western Europe. Quat Sci Rev 30:347–363CrossRefGoogle Scholar
  49. Müller D, Jacobs Z, Cohen TJ et al (2018) Revisiting an arid LGM using fluvial archives: a luminescence chronology for palaeochannels of the Murrumbidgee River, south-eastern Australia, J Quat Sci. Scholar
  50. Nowaczinski E, Schukraft G, Keller C et al (2015) Fluvial dynamics of the Žitava River, SW Slovakia during the last 45 ka BP and their influence on Early Bronze Age human occupation. Quat Int 370:113–126CrossRefGoogle Scholar
  51. Page KJ, Nanson GC, Price DM (1996) Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. J Quat Sci 11:111–126CrossRefGoogle Scholar
  52. Panin AV, Matlakhova E (2015) Fluvial chronology in the East European Plain over the last 20 ka and its palaeohydrological implications. CATENA 130:46–61CrossRefGoogle Scholar
  53. Panin AV, Sidorchuk AY (2006) Macromeanders: the problem of origin and interpretation. Vestnik MGU Series 5. Geografiya 6:14–22 (in Russian)Google Scholar
  54. Panin AV, Sidorchuk AY, Chernov AV (2011) Main stages of floodplain formation in North Eurasian Rivers. Geomorfologiya 3:20–31 (in Russian)Google Scholar
  55. Panin AV, Sidorchuk AY, Vlasov MV (2013) Large Late Valdai discharge in the Don River basin. Izvestiya Akad. Nauk. Ser. Geogr. 1:118–129 (in Russian)Google Scholar
  56. Pastre JF, Leroyer C, Limondin-Lozouet N et al (2002) Variations paléoenvironnementales et paléohydrologiques durant les 15 derniers millénaires: les réponses morphosédimentaires des vallées du Bassin Parisien (France). In: Bravard JP, Magny M (eds) Histoire des rivières et des lacs de Lascaux à nos jours. Errance, Paris, pp 45–62Google Scholar
  57. Pastre JF, Limondin-Lozouet N, Leroyer C et al (2003) River system evolution and environmental changes during the Lateglacial in the Paris Basin (France). Quat Sci Rev 22:2177–2188CrossRefGoogle Scholar
  58. Petrovszki J, Timar G, Molnar G (2014) Is sinuosity a function of slope and bankfull discharge?—A case study of the meandering rivers in the Pannonian Basin. Hydrol Earth Syst Sci Discuss 11:12271–12290CrossRefGoogle Scholar
  59. Popov D, Markovic SB, Strbac D (2008) Generations of meanders in Serbian part of Tisa valley. J. Geogr. Inst. Jovan Cvijic SASA 58:29–41CrossRefGoogle Scholar
  60. Rotnicki K (1983) Modelling past discharges of meandering rivers. In: Gregory KJ (ed) Background to Palaeohydrology. Wiley, Chichester, pp 321–354Google Scholar
  61. Rotnicki K (1991) Retrodiction of palaeodischarges of meandering and sinuous alluvial rivers and its palaeohydroclimatic implications. In: Starkel L, Gregory K, Thornes J (eds) Temperate palaeohydrology. Wiley, Chichester, pp 431–471Google Scholar
  62. Savvaitov AS, Straume JA (1963) On question of stratigraphic subdivision of till of Valday glaciation in the area of lower reaches of the rivers Daugava and Gauja. Proc Inst Geol Acad Sc Latvian SSR 2:71–86. Riga (in Russian)Google Scholar
  63. Schumm SA (1960) The shape of alluvial channels in relation to sediment type. US Geological Survey Professional Paper 353 B: 17–30Google Scholar
  64. Schwan J (1988) The structure and genesis of Weichselian to early Holocene aeolian sand sheets in western Europe. Sed Geol 55:197–232CrossRefGoogle Scholar
  65. Sidorchuk AY (2003) Floodplain sedimentation: inherited memories. Glob Planet Change 39(1–2):13–29CrossRefGoogle Scholar
  66. Sidorchuk AY, Borisova OK (2000) Method of paleogeographical analogues in paleohydrological reconstructions. Quat Int 72(1):95–106CrossRefGoogle Scholar
  67. Sidorchuk AY, Borisova OK, Panin A (2001) Fluvial response to the Late Valdai/Holocene environmental change on the East European Plain. Glob Planet Change 28:303–318CrossRefGoogle Scholar
  68. Sidorchuk AY, Panin A, Borisova O (2003) The Late Glacial and the Holocene palaeohydrology of the Northern Eurasia. In: Gregory KJ, Benito G (eds) Palaeohydrology: understanding global change. Wiley, Chichester, pp 61–76Google Scholar
  69. Sidorchuk AY, Panin AV, Borisova OK (2008) Climate-induced changes in surface run-off on the north-Eurasian plains during the Late Glacial and Holocene. Water Resour 35(4):386–396CrossRefGoogle Scholar
  70. Sidorchuk AY, Panin AV, Borisova OK (2009) Morphology of river channels and surface run-off in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology 113:137–157CrossRefGoogle Scholar
  71. Sidorchuk AY, Panin AV, Borisova OK (2011) Surface run-off to the Black Sea from the East European Plain during Last Glacial Maximum–Late Glacial time. In: Buynevich I, Yanko-Hombach V, Gilbert AS et al (eds) Geology and geoarchaeology of the Black Sea Region: beyond the flood hypothesis. Geol Soc Am Spec Paper 473:1–25Google Scholar
  72. Starkel L (1983) The reflection of hydrologic changes in the fluvial environment of the temperate zone during the last 15 000 years. In: Gregory KJ (ed) Background in palaeohydrology. Wiley, Chichester, pp 213–235Google Scholar
  73. Starkel L, Gebica P (1995) Evolution of river valleys in southern Poland during the Pleistocene-Holocene transition. Biul Perygl 34:177–190Google Scholar
  74. Suther BE, Leigh DS, Brook GA et al (2018) Mega-meander paleochannels of the southeastern Atlantic Coastal Plain, USA. Palaeogeogr Palaeoclim Palaeoecol 511:52–79CrossRefGoogle Scholar
  75. Szumański A (1983) Palaeochannels of large meanders in the river valleys of the Polish Lowland. Quat Stud Poland 4:207–216Google Scholar
  76. Timár G, Sümegi P, Horváth F (2005) Late Quaternary dynamics of the Tisza river: evidence of climatic and tectonic controls, Hungary. Tectonophysics 410:97–110CrossRefGoogle Scholar
  77. Tobolski K (1988) Palaeobotanical study of Bölling sediments at Zabinko in the vicinity of Poznan. Pol Quaest Geogr 10:119–124Google Scholar
  78. Toonen WHJ, Kleinhans MG, Cohen KM (2012) Sedimentary architecture of abandoned channel fills. Earth Surf Proc Landforms 37:459–472CrossRefGoogle Scholar
  79. Turkowska K (1990) Main fluvial episodes in the Ner valley in the last 22000 years; a detailed study at Lublinek near Lodz, Central Poland. Quat Stud Pol 9:85–99Google Scholar
  80. Turner F, Tolksdorf JF, Viehberg F et al (2013) Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes. Quat Sci Rev 60:91–109CrossRefGoogle Scholar
  81. Urz R (2003) Die jungpleistozäne Talfüllung der mittleren Lahn - ein Spiegel der kaltzeitlichen Klimaschwankungen in hessischen Mittelgebirge. Zeitschr f Geomorph NF 47:1–27Google Scholar
  82. Van der Hammen T, Wijmstra TA (1971) The Upper Quaternary of the Dinkel valley. Med Rijks Geol Dienst 22:59–72Google Scholar
  83. Van Geel B, Coope GR, Van der Hammen T (1989) Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Rev Palaeobot Palyn 60:25–129CrossRefGoogle Scholar
  84. Van Huissteden J (1990) Tundra rivers of the Last Glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in the Dinkel Valley (eastern Netherlands). Med Rijks Geol Dienst 44:3–138Google Scholar
  85. Vandenberghe J (1987) Changing fluvial processes in a small lowland valley at the end of the Weichselian Pleniglacial and during the Late Glacial. In: Gardiner V (ed) International geomorphology I. Wiley, Chichester, pp 731–744Google Scholar
  86. Vandenberghe J (1991) Changing conditions of aeolian sand deposition during the last deglaciation period. Z. Geom NF Suppl Bd 90:193–207Google Scholar
  87. Vandenberghe J (1995) Timescales, climate and river development. Quat Sci Rev 14:631–638CrossRefGoogle Scholar
  88. Vandenberghe J, Bohncke S (1985) The Weichselian Late Glacial in a small lowland valley (Mark river, Belgium and The Netherlands). Bull Ass franç et Quat 2–3:167–175Google Scholar
  89. Vandenberghe J, Woo MK (2002) Modern and ancient periglacial river types. Progr Phys Geogr 26:479–506CrossRefGoogle Scholar
  90. Vandenberghe J, Beyens L, Paris P et al (1984) Palaeomorphological and -botanical evolution of small lowland valleys (Mark valley). CATENA 11:229–238Google Scholar
  91. Vandenberghe J, Bohncke S, Lammers W et al (1987) Geomorphology and palaeoecology of the Mark valley (southern Netherlands). I Geomorphological valley development during the Weichselian and Holocene. Boreas 16:55–67CrossRefGoogle Scholar
  92. Vandenberghe J, Kasse C, Bohncke S et al (1994) Climate-related river activity at the Weichselian-Holocene transition: a comparative study of the Warta and Maas rivers. Terra Nova 6:476–485CrossRefGoogle Scholar
  93. Vandenberghe J, Kasse C, Popov D et al (2018) Specifying the external impact on Fluvial Lowland evolution: the Last Glacial Tisza (Tisa) Catchment in Hungary and Serbia. Quaternary 1, 14; Scholar
  94. Velichko AA (1973) Natural processes in the Pleistocene. Nauka, Moscow (in Russian)Google Scholar
  95. Verstraeten G, Notebaert B, Broothaerts N et al (2018) River landscapes in the Dijle catchment: From natural to anthropogenic meandering rivers In: Demoulin (ed) Landscapes and landforms of Belgium and Luxembourg. Springer, pp 269–280Google Scholar
  96. Volkov IA (1960) On the recent past of the rivers Ishim and Nura. Proceedings of the Laboratory of Aeromethods, USSR Academy of Sciences 9:15–19 (in Russian)Google Scholar
  97. Williams G (1988) Paleofluvial estimates from dimensions of former channels and meanders. In: Baker V, Kochel R, Patton P (eds) Flood geomorphology. Wiley, New York, pp 321–334Google Scholar
  98. Willis KJ, Sümegi P, Braun M et al (1995) The late Quaternary environmental history of Bàtorliget, NE Hungary. Palaeogeogr Palaeoclim Palaeoecol 118:25–47CrossRefGoogle Scholar
  99. Woo MK (1986) Permafrost hydrology in North America. Atmos Ocean 24:201–234CrossRefGoogle Scholar
  100. Woolderink HAG, Kasse C, Cohen KM et al (2018) Spatial and temporal variations in river terrace formation, preservation, and morphology in the Lower Meuse Valley, The Netherlands. Quat Res. Scholar
  101. Zaretskaya NE, Panin AV, Golubeva YV et al (2014) Sedimentation settings and the late Pleistocene-Holocene geochronology in the Vychegda River valley. Dokl Earth Sci 455(1):223–228CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth SciencesVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Geographical FacultyMoscow State UniversityMoscowRussia

Personalised recommendations