Advertisement

Noah’s Flood—Probing an Ancient Narrative Using Geoscience

  • Helmut BrücknerEmail author
  • Max Engel
Chapter
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

This article sheds new light on the narrative of Noah’s Flood (Genesis Flood, Great Deluge) from a geoscientific point of view. It outlines the four most popular hypotheses: (i) the postglacial–early Holocene flooding of the Persian/Arabian Gulf which fell dry during the last glacial lowstand of the sea; (ii) a cosmic impact by a meteorite ca. 10,000 years ago, which triggered tsunami waves worldwide; (iii) the rapid re-filling of the Black Sea basin when the early Holocene rise of the Mediterranean Sea surpassed the Bosphorus sill about 8400 years ago; and (iv) the occurrence of one or several mega-floods in Central and Lower Mesopotamia, which left imprints in and around ancient settlement mounds (tells) such as Ur and Uruk. The pros and cons of these scenarios are discussed. Based on geological and sedimentological evidence the authors argue for the latter theory and describe future research venues.

Keywords

Noah’s flood Great deluge Epic of Gilgamesh Persian/Arabian Gulf Cosmic impact Black sea Mesopotamia Ur Uruk 

References

  1. Aksu AE, Hiscott RN, Yasar D (1999) Oscillating Quaternary water levels of the Marmara Sea and vigorous outflow into the Aegean Sea from the Marmara Sea–Black Sea drainage corridor. Mar Geol 153: 275–302CrossRefGoogle Scholar
  2. Aksu AE, Hiscott RN, Mudie PJ et al (2002) Persistent Holocene outflow from the Black Sea to the Eastern Mediterranean contradicts Noah’s flood hypothesis. GSA Today 12(5):4–10CrossRefGoogle Scholar
  3. Alvarez LW, Alvarez W, Asaro F et al (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  4. Aqrawi A (2001) Stratigraphic signatures of climatic change during the Holocene evolution of the Tigris-Euphrates delta, Lower Mesopotamia. Glob Planet Change 28:267–283CrossRefGoogle Scholar
  5. Ballard RD, Coleman DF, Rosenberg GD (2000) Further evidence of abrupt Holocene drowning of the Black Sea shelf. Mar Geol 170:253–261CrossRefGoogle Scholar
  6. Ballard RD, Hiebert FT, Coleman DF et al (2001) Deepwater archaeology of the Black Sea: the 2000 season at Sinop, Turkey. Am J Archaeol 105:607–623CrossRefGoogle Scholar
  7. Becker H, Fassbinder JWE (2001) Uruk—city of Gilgamesh (Iraq). First tests in 2001 for magnetic prospecting. Monuments Sites 6:93–97Google Scholar
  8. Bikoulis P (2015) Evaluating the impact of Black Sea flooding on the Neolithic of Northern Turkey. World Archaeol 47(5):756–775CrossRefGoogle Scholar
  9. Boehmer RM (1997) Uruk—Warka. In: Meyers EM (ed) The Oxford encyclopedia of archaeology in the Near East. Oxford University Press, Oxford, pp 294–298Google Scholar
  10. Bourgeois J, Hansen TA, Wiberg PL et al (1988) A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science 241:567–570CrossRefGoogle Scholar
  11. Brückl E, Brückl J, Heuberger H (2001) Present structure and prefailure topography of the giant rockslide of Köfels. Z Gletscherk Glazialgeol 37(1):49–79Google Scholar
  12. Brückner H (2003) Uruk—a geographic and palaeo-ecologic perspective on a famous ancient city in Mesopotamia. Geoöko 24:229–248Google Scholar
  13. Brückner H (2013a) Uruk—aus geoarchäologischer Sicht. In: van Ess M, Hilgert M, Salje B (eds) Uruk. 5000 Jahre Megacity. Begleitband zur Ausstellung “Uruk—5000 Jahre Megacity” im Pergamonmuseum. Curt-Engelhorn-Stiftung für die Reiss-Engelhorn-Museen, Deutsches Archäeologischen Institut—Orient-Abteilung, Deutsche Orient-Gesellschaft e. V., Vorderasiatisches Museum Berlin. Imhof Verlag, Petersberg, pp 343–351Google Scholar
  14. Brückner H (2013b) Wasserstraßen im Wüstensand. Uruk aus geoarchäologischer Perspektive. Antike Welt 3:18–24Google Scholar
  15. Brückner H, Herda A, Kerschner M et al (2017) Life cycle of estuarine island-from the formation to the landlocking of former islands in the environs of Miletos and Ephesos in western Asia Minor (Turkey). J Archaeol Sci Rep 12:876–894Google Scholar
  16. Bryant E (2008) Tsunami—The underrated hazard, 2nd edn. Springer, BerlinGoogle Scholar
  17. Bryant E, Haslett SK, Scheffers S et al (2010) Tsunami chronology supporting late holocene impacts. J Siberian Fed Univ Eng Technol 3(1):63–71Google Scholar
  18. Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. Geol Soc Am Spec Paper 356:55–68Google Scholar
  19. Deutsch A, Koeberl C, Blum JD et al (1994) The impact-flood connection: does it exist? Terra Nova 6:644–650CrossRefGoogle Scholar
  20. Engel M, Brückner H (2014) The South Qatar survey project (SQSP)—preliminary findings on Holocene coastal changes and geoarchaeological archives. Z Orient-Archäol 7:290–301Google Scholar
  21. Engel M, Brückner H (2018) Holocene climate variability of Mesopotamia and its impact on the history of civilization. EarthArXiv.  https://doi.org/10.31223/osf.io/s2aqt
  22. Erismann T, Heuberger H, Preuss E (1977) Der Bimsstein von Köfels (Tirol), ein Bergsturz-“Friktionit”. Miner Petrol 24(1–2):67–119Google Scholar
  23. Evans G, Kirkham A, Carter RA (2002) Quaternary development of the United Arab Emirates Coast: new evidence from Marawah Island, Abu Dhabi. GeoArabia 7(3):441–458Google Scholar
  24. Finkel I (2014) The ark before Noah: decoding the story of the flood. Hodder & Stoughton, LondonGoogle Scholar
  25. Finkelstein, JJ (1962) Mesopotamia. J Near East Stud 21:73–92CrossRefGoogle Scholar
  26. George AR (2003) The Babylonian Gilgamesh epic: introduction, critical edition and cuneiform texts, vol 1. Oxford University Press, OxfordGoogle Scholar
  27. Giosan L, Filip F, Constatinescu S (2009) Was the Black Sea catastrophically flooded in the early Holocene? Quat Sci Rev 28:1–6CrossRefGoogle Scholar
  28. Goldberg SL, Lau HCP, Mitrovica JX et al (2016) The timing of the Black Sea flood event: Insights from modeling of glacial isostatic adjustment. Earth Planet Sci Lett 452:178–184CrossRefGoogle Scholar
  29. Herget J (2019) Die Sintflut—Mythos und Realität. Geographische Rundschau (in press)Google Scholar
  30. Heyvaert VMA, Baeteman C (2007) Holocene sedimentary evolution and palaeocoastlines of the Lower Khuzestan plain (southwest Iran). Mar Geol 242:83–108CrossRefGoogle Scholar
  31. Hiscott RN, Aksu AE, Mudie PJ et al (2007) The Marmara Sea gateway since ~16 ky BP: non-catastrophic causes of paleoceanographic events in the Black Sea at 8.4 and 7.5 ky BP. In: Yanko-Hombach V, Gilbert AS, Panin N et al (eds) The Black Sea flood question. Springer, Dordrecht, pp 89–118Google Scholar
  32. Jacobsen T (1960) The waters of Ur. Iraq 22:174–185CrossRefGoogle Scholar
  33. Kelletat D (2003) Tsunami durch impacts von Meteoriten im Quartär? Essen Geogr Arb 35:27–38Google Scholar
  34. Kennett DJ, Kennett JP (2007) Influence of Holocene marine transgression and climate change on cultural evolution in southern Mesopotamia. In: Anderson DG, Maasch KA, Sandweiss DH (eds) Climate change and cultural dynamics: a global perspective on Mid-Holocene transitions. Elsevier, Amsterdam, pp 229–264CrossRefGoogle Scholar
  35. Kristan-Tollmann E, Tollmann A (1992) Der Sintflut-Impakt. The Flood impact. Mitt Österr Geol Ges 84:1–63Google Scholar
  36. Kristan-Tollmann E, Tollmann A (1994) The youngest big impact on Earth deduced from geological and historical evidence. Terra Nova 6(2):209–217CrossRefGoogle Scholar
  37. Lambeck K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet Sci Lett 142:43–57CrossRefGoogle Scholar
  38. Lericolais G (2017) Late Pleistocene environmental factors defining the Black Sea, and submerged landscapes on the Western continental Shelf. In: Flemming NC, Harff J, Moura D et al (eds) Submerged landscapes of the European Continental shelf: Quaternary paleoenvironments. Blackwell-Wiley, Chichester, pp 479–495CrossRefGoogle Scholar
  39. Lokier SW, Bateman MD, Larkin NR et al (2015) Late Quaternary sea-level changes of the Persian Gulf. Quat Res 84:69–81CrossRefGoogle Scholar
  40. Loumou A, Giourga C (2003) Olive groves: “The life and identity of the Mediterranean”. Agr Hum Values 20:87–95CrossRefGoogle Scholar
  41. Morozova GS (2005) A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in Lower Mesopotamia. Geoarchaeology 20:401–423CrossRefGoogle Scholar
  42. Nicolussi K, Spötl C, Thurner A, Reimer PJ (2015) Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria). Geomorphology 243:87–91CrossRefGoogle Scholar
  43. Parker AG, Armitage SJ, Engel M et al (2018) Geomorphology, geoarchaeology and palaeoenvironments. In: Drechsler P (ed) Dosariyah—an Arabian Neolithic Coastal community in the central Gulf. Archaeopress, Oxford, pp 21–55Google Scholar
  44. Plaziat JC, Younis WR (2005) The modern environments of Molluscs in southern Mesopotamia, Iraq: a guide to paleogeographical reconstructions of Quaternary fluvial, palustrine and marine deposits. Carnets Géol CG2005 (A01),  https://doi.org/10.4267/2042/1453
  45. Pleins JD (2003) When the great abyss opened: classic and contemporary readings of Noah’s Flood. Oxford University Press, OxfordGoogle Scholar
  46. Pollock S (1999) Ancient Mesopotamia. Cambridge University Press, CambridgeGoogle Scholar
  47. Renne PR, Deino AL, Hilgen FJ et al (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339:684–687CrossRefGoogle Scholar
  48. Ryan WBF (2007) Status of the Black Sea flood hypothesis. In: Yanko-Hombach V, Gilbert AS, Panin N et al (eds) The Black Sea flood question. Springer, Dordrecht, pp 63–88Google Scholar
  49. Ryan WBF, Pitman WC (1998) Noah’s flood: the new scientific discoveries about the event that changed history. Touchstone, New YorkGoogle Scholar
  50. Ryan WBF, Pitman WC, Major CO et al (1997) An abrupt drowning of the Black Sea shelf. Mar Geol 138:119–126CrossRefGoogle Scholar
  51. Ryan WBF, Major CO, Lericolais G et al (2003) Catastrophic flooding of the Black Sea. Ann Rev Earth Planet Sci 31:525–554CrossRefGoogle Scholar
  52. Sanlaville P (1989) Considérations sur l’évolution de la Basse Mésopotamie au cours des derniers millénaires. Paléorient 15:5–27CrossRefGoogle Scholar
  53. Sarnthein M (1972) Sediments and history of the postglacial transgression in the Persian Gulf and Northwest Gulf of Oman. Mar Geol 12:245–266CrossRefGoogle Scholar
  54. Schwartz M, Hollander D (2000) Annealing, distilling, reheating and recycling: bitumen processing in the Ancient Near East. Paléorient 26:83–91CrossRefGoogle Scholar
  55. Sissakian VK, Abdul Jab’bar MF, Al-Ansari N et al (2014) Meandering of tributaries of the Tigris River due to mass movements within Iraq. Engineering 6:712–730CrossRefGoogle Scholar
  56. Suess FE (1936) Der Meteor-Krater von Köfels bei Umhausen im Ötztale, Tirol. Neues Jahrb Mineral Geol Paläontol Abh 72:98–155Google Scholar
  57. Surenian R (1986) Scanning electron microscope study of shock features in pumice and gneiss from Köfels (Tyrol, Austria). Mitt Geol Paläontol Innsbruck 15:135–143Google Scholar
  58. Teller JT, Glennie KW, Lancaster N et al (2000) Calcareous dunes of the United Arab Emirates and Noah’s Flood: the postglacial reflooding of the Persian (Arabian) Gulf. Quat Int 68–71:297–308CrossRefGoogle Scholar
  59. Tollmann A, Tollmann E (1993) Und die Sintflut gab es doch. Vom Mythos zur historischen Wahrheit. Droemer Knaur, MünchenGoogle Scholar
  60. Turney CS, Brown H (2007) Catastrophic early Holocene sea level rise, human migration and the Neolithic transition in Europe. Quat Sci Rev 26:2036–2041CrossRefGoogle Scholar
  61. Uchupi E, Swift SA, Ross DA (1996) Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf. Mar Geol 129:237–269CrossRefGoogle Scholar
  62. van Ess M, Hilgert M, Salje B (eds) (2013) Uruk. 5000 Jahre Megacity. Begleitband zur Ausstellung “Uruk—5000 Jahre Megacity” im Pergamonmuseum. Curt-Engelhorn-Stiftung für die Reiss-Engelhorn-Museen, Deutsches Archäeologischen Institut—Orient-Abteilung, Deutsche Orient-Gesellschaft e.V., Vorderasiatisches Museum Berlin. Imhof Verlag, PetersbergGoogle Scholar
  63. Verhoeven K (1998) Geomorphological research in the Mesopotamian flood plain. In: Gasche H, Tanret M (eds) Changing watercourses in Babylonia. Towards a reconstruction of the ancient environment in Lower Mesopotamia, vol I. University of Chicago Press, Chicago, pp 159–245Google Scholar
  64. Vitaliano DB (2007) Geomythology: geological origins of myths and legends. Geol Soc London Spec Pub 273:1–7CrossRefGoogle Scholar
  65. Vött A, Brückner H, Kraft JC (2017) Do mythological traditions reflect past geographies? The Acheloos delta (Greece) and the Artemision (Turkey) case studies. Z Geomorph 61(Suppl 1):203–221CrossRefGoogle Scholar
  66. Woolley CL (1923) Excavations at Ur of the Chaldees. Antiq J 3:311–333CrossRefGoogle Scholar
  67. Woolley CL (1929) Ur of the Chaldees: a record of seven years of excavation. Reprinted with revisions in 1952 by Harmondsworth, Middlesex, Eng., Penguin Books (German first edition in 1930 as: Ur und die Sintflut. Sieben Jahre Ausgrabungen in Chaldäa, der Heimat Abrahams. F. A. Brockhaus, Leipzig)Google Scholar
  68. Woolley L (1955) Ur Excavations, vol. IV: the early periods. A report on the sites and objects prior in date to the Third Dynasty of Ur discovered in the course of the excavations. Publications of the joint expedition of the British Museum and of the Museum of the University of Pennsylvania to Mesopotamia. London, PhiladelphiaGoogle Scholar
  69. Yanko-Hombach V (2007) Controversy over Noah´s flood in the Black Sea: geological and foraminiferal evidence from the shelf. In: Yanko-Hombach V, Gilbert AS, Panin N et al (eds) The Black Sea flood question. Springer, Dordrecht, pp 149–203Google Scholar
  70. Yanko-Hombach V, Gilbert AS, Panin N et al (eds) (2007a) The Black Sea flood question: changes in coastline, climate, and human settlement. Springer, DordrechtGoogle Scholar
  71. Yanko-Hombach V, Gilbert AS, Dolukhanov P (2007b) Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence. Quat Int 167–168:91–113CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of GeographyUniversity of CologneCologneGermany
  2. 2.Geological Survey of BelgiumRoyal Belgian Institute of Natural ScienceBrusselsBelgium

Personalised recommendations