Flooding Northern Germany: Impacts and Magnitudes of Middle Pleistocene Glacial Lake-Outburst Floods

  • Jutta WinsemannEmail author
  • Jörg Lang
Part of the Geography of the Physical Environment book series (GEOPHY)


The major objective of this study is to summarise the routing and impact of lake-outburst floods along the south-western margin of the Middle Pleistocene (Saalian) Fennoscandian ice sheet. We provide an overview about the spatial and temporal evolution and drainage history of ice-dammed lakes in northern Germany. The repeated drainage of these ice-dammed lakes contributed to the destabilisation of the ice margin and triggered ice-streaming and/or local re-advances. Major flood-related channels became part of the ice-marginal drainage system during the decay of the Saalian ice sheets. The most proximal lake-outburst flood drainage routes are characterised by deep plunge pools, channels, megaflutes, scour pools and streamlined hills cut into Pleistocene deposits and Cenozoic and Mesozoic bedrock. Depositional features include large sand and gravel bars and fields of sandy bedforms deposited by supercritical to subcritical flows. The clast composition of bars commonly indicates a strong reworking and redeposition of local fluvial and colluvial material, partly rich in mammoth bones. To quantify flow characteristics during glacial lake-outburst floods, 2D hydraulic simulations were conducted for different ice-margin configurations and flood hydrographs. Subsequently, the model outcomes were compared with the sedimentological and geomorphological evidence for the lake-drainage events in order to estimate the most likely flood pathways, the impact of the flood on erosion, sediment distribution and post-glacial landscape evolution.


Northern Germany Middle Pleistocene Glacial lakes Lake-outburst floods 



Parts of this study were funded in the framework of the “Wege in die Forschung” programme by Leibniz Universität Hannover (project title: “Mittelpleistozäne Megafluten in Norddeutschland: Auswirkungen und Magnituden”; Grant No. II-05-2014-05) and by MWK Niedersachsen Project (11.2-76202-17-7/08). Hill-shaded relief maps were produced using Copernicus data and information funded by the European Union (EU-DEM layers).

We thank LBEG (Niedersächsisches Landesamt für Bergbau, Energie und Geologie) and GD NRW for providing borehole data and unpublished subsurface maps and Fugro Consult GmbH for providing GeODin software for data management. The manuscript benefited from the discussion with A. Lenz and M. Dölling. Constructive comments by J. Herget and an anonymous reviewer are highly appreciated and helped to improve the manuscript. Many thanks are also due to the owners of the open-pits for permitting us to work on their properties.


  1. Alho P, Russell AJ, Carrivick JL et al (2005) Reconstruction of the largest Holocene jökulhlaup within Jökulsá á Fjöllum, NE Iceland. Quat Sci Rev 24:2319–2334CrossRefGoogle Scholar
  2. Alho P, Baker VR, Smith LN (2010) Paleohydraulic reconstruction of the largest Glacial Lake Missoula draining(s). Quat Sci Rev 29:3067–3078CrossRefGoogle Scholar
  3. Bärtling R (1913) Geologisches Wanderbuch für den Niederrheinisch-Westfälischen Industriebezirk, umfassend das Gebiet vom nördlichen Teil des Rheinischen Schiefergebirges bis zur holländischen Grenze. Enke, StuttgartGoogle Scholar
  4. Bärtling R, Breddin H (1931) Erläuterungen zur geologischen Karte von Preußen und benachbarter deutscher Länder 1:25000, Blatt Mühlheim (Ruhr) Nr. 2575. Preußische Geologische Landesanstalt, BerlinGoogle Scholar
  5. Baker VR (1973) Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington. Boulder, CO. Geological Society of America Special Paper 144, pp 1‒7Google Scholar
  6. Baker VR (2009) Channeled Scabland morphology. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 65–77CrossRefGoogle Scholar
  7. Beeson JW, Goldfinger C, Fortin WF (2017) Large-scale modification of submarine geomorphic features on the Cascadia accretionary wedge caused by catastrophic flooding events. Geosphere 13:1713–1728CrossRefGoogle Scholar
  8. Beets CJ, Beets DJ (2003) A high resolution stable isotope record of the penultimate deglaciation in lake sediments below the city of Amsterdam, The Netherlands. Quat Sci Rev 22:195–207CrossRefGoogle Scholar
  9. Beets DJ, Meijer T, Beets CJ et al (2005) Evidence for a Middle Pleistocene glaciation of MIS 8 age in the southern North Sea. Quat Int 133–134:7–19CrossRefGoogle Scholar
  10. Björnsson H (2009) Jökulhlaups in Iceland: sources, release and drainage. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 50–64CrossRefGoogle Scholar
  11. Böse M, Lüthgens C, Lee JR et al (2012) Quaternary glaciations of northern Europe. Quat Sci Rev 44:1–25CrossRefGoogle Scholar
  12. Bolsenkötter H (1968) Die Quartärbasis der Niederrheinischen Bucht von Düsseldorf bis zur Landesgrenze. Fortsch Geol Rheinland und Westfalen 16, pp 333‒338Google Scholar
  13. Bolsenkötter H, Hilden HD (1969) Ein Beitrag zur Talgeschichte der Stever und der unteren Lippe. Fortsch Geol Rheinland und Westfalen 17, pp 47‒54Google Scholar
  14. Bohorquez P, Carling PA, Herget J (2015) Dynamic simulation of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia. Int Geol Rev 58:1795–1817CrossRefGoogle Scholar
  15. Braun FJ, Thiermann A (1975) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen 100000, Blatt C4306 Recklinghausen. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  16. Busschers FS, Van Balen RT, Cohen KM et al (2008) Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 37:377–398CrossRefGoogle Scholar
  17. Carling PA (2013) Freshwater megaflood sedimentation: what can we learn about generic processes? Earth-Sci Rev 125:87–113CrossRefGoogle Scholar
  18. Carling PA, Kirkbride, AD, Parnachov S et al (2002) Late Quaternary catastrophic flooding in the Altai mountains of south–central Siberia: a synoptic overview and an introduction to flood deposit sedimentology. In: Martini PI, Baker VR, Garzon G (eds) Flood and megaflood processes and deposits: recent and ancient examples. Special Publication International Association of Sedimentology, vol 32. Blackwell Science, Oxford, pp 17‒35Google Scholar
  19. Carling PA, Burr DM, Johnsen TF et al (2009a) A review of open-channel megaflood depositional landforms on Earth and Mars. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 33–49CrossRefGoogle Scholar
  20. Carling PA, Herget J, Lanz JK et al (2009b) Channel-scale erosional bedforms in bedrock and in loose granular material: character, processes and implications. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 13–32CrossRefGoogle Scholar
  21. Carling PA, Martini IP, Herget J et al (2009c) Megaflood sedimentary valley fill: Altai Mountains, Siberia. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 243–264CrossRefGoogle Scholar
  22. Carling P, Villanueva I, Herget J et al (2010) Unsteady 1-D and 2-D hydraulic models with ice-dam break for Quaternary megafloods, Altai Mountains, southern Siberia. Global Planet Change 70:24–34CrossRefGoogle Scholar
  23. Carrivick JL (2007) Hydrodynamics and geomorphic work of jökulhlaups (glacial outburst floods) from Kverkfjöll volcano, Iceland. Hydrol Process 21:725–740CrossRefGoogle Scholar
  24. Carrivick JL (2009) Jökulhlaups from Kverkfjöll volcano, Iceland: modelling transient hydraulic phenomena. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 273–289CrossRefGoogle Scholar
  25. Carrivick JL, Tweed FS (2013) Proglacial lakes: character, behaviour and geological importance. Quat Sci Rev 78:34–52CrossRefGoogle Scholar
  26. Cenderelli DA (2000) Floods from natural and artificial dam failures. In: Wohl EE (ed) Inland flood hazards: human, riparian, and aquatic communities. Cambridge University Press, Cambridge, pp 73–103CrossRefGoogle Scholar
  27. Clarke GKC, Leverington DW, Teller JT et al (2004) Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event. Quat Sci Rev 23:389–407CrossRefGoogle Scholar
  28. Cohen KM, Gibbard PL, Weerts HJT (2014) North Sea palaeogeographical reconstructions for the last 1 Ma. Neth J Geosci 93:7–29Google Scholar
  29. Cohen KM, Westley K, Erkens G et al (2017) The North Sea. In: Flemming NC, Harff J, Moura D, Burgess A, Bailey GN (eds) Submerged landscapes of the European continental shelf: quaternary palaeoenvironments. Wiley, Chichester, pp 147–186CrossRefGoogle Scholar
  30. Collier JS, Oggioni F, Gupta S et al (2015) Streamlined islands and the English Channel megaflood hypothesis. Global Planet Change 135:190–206CrossRefGoogle Scholar
  31. Colman SM, Clark JA, Clayton L et al (1994) Deglaciation, lake levels, and meltwater discharge in the Lake Michigan Basin. Quat Sci Rev 13:879–890CrossRefGoogle Scholar
  32. Curry BB, Hajic ER, Clark JA et al (2014) The Kankakee torrent and other large meltwater flooding events during the last deglaciation, Illinois, USA. Quat Sci Rev 90:22–36CrossRefGoogle Scholar
  33. Denlinger RP, O’Connell DRH (2010) Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula. Geol Soc Am Bull 122:678–689CrossRefGoogle Scholar
  34. De Clercq M, Missiaen T, Wallinga J et al (2018) A well-preserved Eemian incised-valley fill in the southern North Sea Basin, Belgian Continental Shelf-Coastal Plain: Implications for northwest European landscape evolution. Earth Surf Process Land 43:1913–1942CrossRefGoogle Scholar
  35. Duller RA, Mountney NP, Russell AJ et al (2008) Architectural analysis of a volcaniclastic jökulhlaup deposit, southern Iceland: sedimentary evidence for supercritical flow. Sedimentology 55:939–964CrossRefGoogle Scholar
  36. Eissmann L (2002) Quaternary geology of eastern Germany (Saxony, Saxon-Anhalt, South Brandenburg, Thuringia), type area of Elsterian and Saalian Stages in Europe. Quat Sci Rev 21:1275–1346CrossRefGoogle Scholar
  37. Ehlers J, Grube A, Stephan HJ et al (2011) Pleistocene glaciations of North Germany—new results. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations—extent and chronology: a closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 149–162Google Scholar
  38. Feldmann L (2002) Das Quartär zwischen Harz und Allertal mit einem Beitrag zur Landschaftsgeschichte im Tertiär. Clausth Geowiss 1, pp 1‒149Google Scholar
  39. Feldmann L, Groetzner JP, Weymann HJ (2001) Zur pleistozänen Geschichte des “Großen Bruch” im nördlichen Harzvorland. Geol Beitr Hannover 2, pp 127‒137Google Scholar
  40. Froese DG, Smith DG, Westgate JA et al (2003) Recurring middle Pleistocene outburst floods in east-central Alaska. Quat Res 60:50–62CrossRefGoogle Scholar
  41. Gibbard PL (2007) Palaeogeography: Europe cut adrift. Nature 448:259–260CrossRefGoogle Scholar
  42. Gibbard P, Cohen KM (2008) Global chronostratigraphical correlation table for the last 2.7 million years. Episodes 31:243–247Google Scholar
  43. Grabert H, Jansen F, Pieper B et al (1980) Erläuterungen zur geologischen Karte 1:100000, Blatt C4706 Düsseldorf-Essen. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  44. Gupta S, Collier JS, Palmer-Felgate A et al (2007) Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448:342–346CrossRefGoogle Scholar
  45. Gupta S, Collier JS, Garcia-Moreno D et al (2017) Two-stage opening of the Dover Strait and the origin of island Britain. Nat Commun 8:15101CrossRefGoogle Scholar
  46. Hall AM, Migoń P (2010) The first stages of erosion by ice sheets: evidence from central Europe. Geomorphology 123:349–363CrossRefGoogle Scholar
  47. Hanáček M, Nýlt D, Skácelová Z et al (2018) Sedimentary evidence for an ice-sheet dammed lake in a mountain valley of the Eastern Sudetes, Czechia. Acta Geol Pol 68:107–134Google Scholar
  48. Herget J (1997) Die Flußentwicklung des Lippetals. Bochumer Geograph Arb 62, pp 1–132Google Scholar
  49. Herget J (1998) Temporäre Entwässerungsbahnen am Südrand der Westfälischen Tieflandsbucht – ein Szenario. In: Glatthaar D, Herget J (eds) Physische Geographie und Landeskunde – Festschrift für Herbert Liedtke. Bochumer Geograph Arb Sonderreihe 13, pp 23‒30Google Scholar
  50. Herget J (2005) Reconstruction of Pleistocene ice-dammed lake outburst floods in the Altai-Mountains, Siberia. Geological Society of America Special Paper 386, pp 1‒118Google Scholar
  51. Herget J, Schütte F, Klosterhalfen A (2015) Empirical modelling of outburst flood hydrographs. Z Geomorphol Supplementary Issues 59:177–198CrossRefGoogle Scholar
  52. Hilden HD (1975) Erläuterungen zur hydrogeologischen Karte von Nordrhein-Westfalen 1:100000, Blatt C4306 Recklinghausen. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  53. Houmark-Nielsen M (2011) Pleistocene glaciations in Denmark: a closer look at chronology, ice dynamics and landforms. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations—extent and chronology: a closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 47–58Google Scholar
  54. Hoyal DCJD, Van Wagoner JC, Adair NL et al (2003) Sedimentation from jets: a depositional model for clastic deposits of all scales and environments. Search and Discovery Article #40082Google Scholar
  55. Jansen F (1980) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen, 1:25000, Blatt 4510 Witten. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  56. Jansen F (2001) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen 1:25000, Blatt 4305 Wesel. Geologischer Dienst Nordrhein-Westfalen, KrefeldGoogle Scholar
  57. Jansen F, Drozdzewski G (1986) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen 1:25000, Blatt 4307 Mühlheim an der Ruhr. Geologischer Dienst Nordrhein-Westfalen, KrefeldGoogle Scholar
  58. Johnsen TF, Brennand TA (2006) The environment in and around ice-dammed lakes in the moderately high relief setting of the southern Canadian Cordillera. Boreas 35:106–125CrossRefGoogle Scholar
  59. Junge FW (1998) Die Bändertone Mitteldeutschlands und angrenzender Gebiete. Altenb Naturwiss Forsch 9:1–210Google Scholar
  60. Junge FW, Böttger T, Siegert C (1999) Die Stauseesedimente des Bruckdorfer Horizontes: Ergebnis der Eisrandoszillation des saaleglazialen skandinavischen Inlandeises in Mitteldeutschland. Mauritiana 17:257–276Google Scholar
  61. Kars RH, Busschers FS, Wallinga J (2012) Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quat Geochronol 12:74–86CrossRefGoogle Scholar
  62. Kataoka KS (2011) Geomorphic and sedimentary evidence of a gigantic outburst flood from Towada caldera after the 15 ka Towada-Hachinohe ignimbrite eruption, northeast Japan. Geomorphology 125:11–26CrossRefGoogle Scholar
  63. Kehew AE, Lord ML (1986) Origin and large-scale erosional features of glacial-lake spillways in the northern Great Plains. Geol Soc Am Bull 97:162–177CrossRefGoogle Scholar
  64. Kehew AE, Lord ML, Kozlowski AL et al (2009) Proglacial megaflooding along the margins of the Laurentide Ice Sheet. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 104–127CrossRefGoogle Scholar
  65. Kenzler M, Tsukamoto S, Meng S et al (2017) New age constraints from the SW Baltic Sea area–implications for Scandinavian Ice Sheet dynamics and palaeo-environmental conditions during MIS 3 and early MIS 2. Boreas 46:34–52CrossRefGoogle Scholar
  66. Komatsu G, Arzhannikov SG, Gillespie AR et al (2009) Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River. Geomorphology 104:143–164CrossRefGoogle Scholar
  67. Kostic S (2014) Upper flow regime bedforms on levees and continental slopes: turbidity current flow dynamics in response to fine-grained sediment waves. Geosphere 10:1094–1103CrossRefGoogle Scholar
  68. Kostic S, Casalbore D, Chiocci F et al (2019) Role of upper-flow-regime bedforms emplaced by sediment gravity flows in the evolution of deltas. J Mar Sci Eng 7(1):5CrossRefGoogle Scholar
  69. Klostermann J (1992) Das Quartär der Niederrheinischen Bucht - Ablagerungen der letzten Eiszeit am Niederrhein. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  70. Laban C, van der Meer JJ (2011) Pleistocene glaciation in the Netherlands. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations—extent and chronology: a closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 247‒260Google Scholar
  71. Lang J, Winsemann J (2013) Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sediment Geol 296:36–54CrossRefGoogle Scholar
  72. Lang J, Winsemann J, Steinmetz D et al (2012) The Pleistocene of Schöningen, Germany: a complex tunnel valley fill revealed from 3D subsurface modelling and shear wave seismics. Quat Sci Rev 39:86–105CrossRefGoogle Scholar
  73. Lang J, Lauer T, Winsemann J (2018) New age constraints for the Saalian glaciation in northern central Europe: implications for the extent of ice sheets and related proglacial lake systems. Quat Sci Rev 180:240–259CrossRefGoogle Scholar
  74. Lang J, Alho P, Kasvi E et al (2019) Impact of Middle Pleistocene (Saalian) glacial lake-outburst floods on the drainage pathways in northern central Europe: Insights from 2D numerical flood simulation. Quat Sci Rev 209:82–99Google Scholar
  75. Lauer T, Weiss M (2018) Timing of the Saalian-and Elsterian glacial cycles and the implications for Middle-Pleistocene hominin presence in central Europe. Sci Rep 8:5111CrossRefGoogle Scholar
  76. Lee JR, Busschers FS, Sejrup HP (2012) Pre-Weichselian Quaternary glaciations of the British Isles, The Netherlands, Norway and adjacent marine areas south of 68°N: implications for long-term ice sheet development in northern Europe. Quat Sci Rev 44:213–228CrossRefGoogle Scholar
  77. LaRoque A, Dubois JMM, Leblon B (2003) A methodology to reconstruct small and short-lived ice-dammed lakes in the Appalachians of Southern Québec. Quat Int 99–100:59–71CrossRefGoogle Scholar
  78. Lepper J (1976) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen 1:25000, Blatt Karlshafen 4322. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  79. Litt T, Behre KE, Meyer KD, Stephan HJ, Wansa S (2007) Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes. E&G Quat Sci J 56:7–65CrossRefGoogle Scholar
  80. Lüthgens C, Böse M, Krbetschek M (2010) On the age of the young morainic morphology in the area ascribed to the maximum extent of the Weichselian glaciation in north-eastern Germany. Quat Int 222:72–79CrossRefGoogle Scholar
  81. Lord ML, Kehew AE (1987) Sedimentology and paleohydrology of glacial-lake outburst deposits in southeastern Saskatchewan and northwestern North Dakota. Geol Soc Am Bull 99:663–673CrossRefGoogle Scholar
  82. Manville V, White JDL, Houghton BF et al (1999) Paleohydrology and sedimentology of a post-1.8 ka breakout flood from intracaldera Lake Taupo, North Island, New Zealand. Geol Soc Am Bull 111:1435–1447CrossRefGoogle Scholar
  83. Mangerud J, Jakobsson M, Alexanderson H et al (2004) Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quat Sci Rev 23:1313‒1332CrossRefGoogle Scholar
  84. Margold M, Jansson KN, Stroeven AP et al (2011) Glacial Lake Vitim, a 3000-km3 outburst flood from Siberia to the Arctic Ocean. Quat Res 76:393‒396CrossRefGoogle Scholar
  85. Margold M, Jansen JD, Codilean AT et al (2018) Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60,000 years. Quat Sci Rev 187:41–61CrossRefGoogle Scholar
  86. Marks L (2011) Quaternary glaciations in Poland. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations—extent and chronology: a closer look. Developments in quaternary science, vol 15. Elsevier, Amsterdam, pp 299‒303Google Scholar
  87. Marks L, Karabanov A, Nitychoruk J et al (2018) Revised limit of the Saalian ice sheet in central Europe. Quat Int 478:59–74CrossRefGoogle Scholar
  88. Marren PM, Schuh M (2009) Criteria for identifying jökulhlaups deposits in the sedimentary record. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 225–242CrossRefGoogle Scholar
  89. Meinsen J, Winsemann J, Weitkamp A et al (2011) Middle Pleistocene (Saalian) lake outburst floods in the Münsterland Embayment (NW Germany): impacts and magnitudes. Quat Sci Rev 30:2597–2625CrossRefGoogle Scholar
  90. Meyer KD (1983) Zur Anlage der Urstromtäler in Niedersachsen. Z Geomorphol NF 27:147–160Google Scholar
  91. Miyamoto H, Ito K, Komatsu G et al (2006) Numerical simulations of large-scale cataclysmic floodwater: a simple depth-averaged model and an illustrative application. Geomorphology 76:179–192CrossRefGoogle Scholar
  92. Miyamoto H, Komatsu G, Baker VR et al (2007) Cataclysmic scabland flooding: insights from a simple depth-averaged numerical model. Environ Model Softw 22:1400–1408CrossRefGoogle Scholar
  93. Murton DK, Murton JB (2012) Middle and Late Pleistocene glacial lakes of lowland Britain and the southern North Sea Basin. Quat Int 260:115–142CrossRefGoogle Scholar
  94. Murton JB, Bateman MD, Dallimore SR et al (2010) Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464:740–743CrossRefGoogle Scholar
  95. O’Connor JE (1993) Hydrology, hydraulics, and geomorphology of the Bonneville Flood. Geological Society of America Special Paper 274, pp 1–83Google Scholar
  96. O’Connor JE, Baker VR (1992) Magnitudes and implications of peak discharges from glacial Lake Missoula. Geol Soc Am Bull 104:267–279CrossRefGoogle Scholar
  97. Pagliara S, Hager WH, Minor HE (2006) Hydraulics of plane plunge pool scour. J Hydraul Eng 132:450–461CrossRefGoogle Scholar
  98. Peeters J, Busschers FS, Stouthamer E (2015) Fluvial evolution of the Rhine during the last interglacial-glacial cycle in the southern North Sea basin: a review and look forward. Quat Int 357:176–188CrossRefGoogle Scholar
  99. Peeters J, Busschers FS, Stouthamer E et al (2016) Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: a case study of the late Middle and Late Pleistocene Rhine system in the Netherlands. Quat Sci Rev 131:211–236CrossRefGoogle Scholar
  100. Perkins AJ, Brennand TA (2015) Refining the pattern and style of Cordilleran Ice Sheet retreat: palaeogeography, evolution and implications of lateglacial ice-dammed lake systems on the southern Fraser Plateau, British Columbia, Canada. Boreas 44:319–342CrossRefGoogle Scholar
  101. Pieper B (1990) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen 1:25000, Blatt 4508 Essen. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  102. Pilger A, Mocha P, Petzold B et al (1991) Die nordischen Gletscher am nordwestlichen Harzrand und ihre Stauseen. Clausth Geol Abh 48:1–159Google Scholar
  103. Preuss H (1975) Gliederung und Zusammensetzung der Weserterrassen bei Bodenfelde (mit einer geologischen Kartierung). Mitt Geol Inst Techn Univ Hannover 12, pp 5‒49Google Scholar
  104. Rohde P, Thiem W (1998) Die eiszeitliche Weser im heutigen Weser- und Leinetal. In: Feldmann L, Meyer KD (eds) Quartär in Niedersachsen. Exkursionsführer zur Jubiläums-Hauptversammlung der Deutschen Quartärvereinigung in Hannover, Exkursion C. DEUQUA, Hannover, pp 89‒153Google Scholar
  105. Rohde P (1989) Elf pleistozäne Sand-Kies-Terrassen der Weser: Erläuterungen eines Gliederungsschemas für das obere Wesertal. Eiszeit Gegenw 39:42–56Google Scholar
  106. Rosenwinkel S, Landgraf A, Schwanghart W et al (2017) Late Pleistocene outburst floods from Issyk Kul, Kyrgyzstan? Earth Surf Process Land 42:1535–1548CrossRefGoogle Scholar
  107. Roskosch J, Winsemann J, Polom U et al (2015) Luminescence dating of ice-marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas 44:103–126CrossRefGoogle Scholar
  108. Russell AJ (2009) Jökulhlaup (ice-dammed lake outburst flood) impact within a valley-confined sandur subject to backwater conditions, Kangerlussuaq, West Greenland. Sediment Geol 215:33–49CrossRefGoogle Scholar
  109. Russell AJ, Roberts MJ, Fay H et al (2006) Icelandic jökulhlaup impacts: implications for ice-sheet hydrology, sediment transfer and geomorphology. Geomorphology 75:33‒64CrossRefGoogle Scholar
  110. Rudoy AN (2002) Glacier-dammed lakes and geological work of glacial superfloods in the Late Pleistocene, Southern Siberia, Altai Mountains. Quat Int 87:119–140CrossRefGoogle Scholar
  111. Ruegg GHJ (1983) Glaciofluvial and glaciolacustrine deposits in the Netherlands. In: Ehlers J (ed) Glacial deposits in North-West Europe. AA Balkema, Rotterdam, pp 379–392Google Scholar
  112. Salamon T, Krzyszkowski D, Kowalska A (2013) Development of Pleistocene glaciomarginal lake in the foreland of the Sudetes (SW Poland). Geomorphology 190:1–15CrossRefGoogle Scholar
  113. Sejrup HP, Clark CD, Hjelstuen BO (2016) Rapid ice sheet retreat triggered by ice stream debuttressing: evidence from the North Sea. Geology 44:355–358CrossRefGoogle Scholar
  114. Skupin K, Zandstra JG (2010) Gletscher der Saale-Kaltzeit am Niederrhein. Untersuchungen zur Petrographie und Leitgeschiebeführung der Stauchmoränen des Niederrheins und deren Anbindung an die Moränen des Münsterlandes. Geologischer Dienst Nordrhein-Westfalen, KrefeldGoogle Scholar
  115. Skupin K, Speetzen E, Zandstra JG (1993) Die Eiszeit in Nordwestdeutschland. Zur Vereisung der Westfälischen Bucht und angrenzender Gebiete. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  116. Skupin K, Speetzen E, Zandstra JG (2003) Die Eiszeit in Nordost-Westfalen und angrenzenden Gebieten Niedersachsens. Geologischer Dienst NRW, KrefeldGoogle Scholar
  117. Smith AJ (1985) A catastrophic origin for the palaeovalley system of the eastern English Channel. Mar Geol 64:65–75CrossRefGoogle Scholar
  118. Smith GA (1993) Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington. Geol Soc Am Bull 105:77–100CrossRefGoogle Scholar
  119. Smith LN (2017) Repeated sedimentation and exposure of glacial Lake Missoula sediments: a lake-level history at Garden Gulch, Montana, USA. Quat Sci Rev 155:114–126CrossRefGoogle Scholar
  120. Speetzen E (1990) Die Entwicklung der Flußsysteme in der Westfälischen Bucht (NW-Deutschland) während des Känozoikums. Geol Paläont Westfalen 16:7–25Google Scholar
  121. Speetzen E, Zandstra JG (2009) Elster-und Saale-Vereisung im Weser-Ems-Gebiet und ihre kristallinen Leitgeschiebegesellschaften. Münstersche Forsch Geol Paläont 103, pp 1‒113Google Scholar
  122. Stehn O (1988) Erläuterungen zur geologischen Karte von Nordrhein-Westfalen, 1:25000, Blatt 4509 Bochum. Geologisches Landesamt Nordrhein-Westfalen, KrefeldGoogle Scholar
  123. Stelling GS (1984) On the construction of computational methods for shallow water flow problems. Rijkswaterstaat Com 35, pp 1‒226Google Scholar
  124. Stokes CR, Clark CD (2003) The Dubawnt Lake palaeo-ice stream: evidence for dynamic ice sheet behaviour on the Canadian Shield and insights regarding the controls on ice-stream location and vigour. Boreas 32:263–279CrossRefGoogle Scholar
  125. Stokes CR, Clark CD (2004) Evolution of late glacial ice-marginal lakes on the northwestern Canadian Shield and their influence on the location of the Dubawnt Lake palaeo-ice stream. Palaeogeogr Palaeoclimatol Palaeoecol 215:155–171CrossRefGoogle Scholar
  126. Teller JT, Leverington DW, Mann JD (2002) Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climatic change during the last deglaciation. Quat Sci Rev 21:879–887CrossRefGoogle Scholar
  127. Ter Wee MW (1983) The Saalian glaciation in the northern Netherlands. In: Ehlers J (ed) Glacial deposits in North-West Europe. AA Balkema, Rotterdam, pp 405–412Google Scholar
  128. Thome KN (1983) Gletschererosion und –akkumulation im Münsterland und angrenzenden Gebieten. N Jb Geol Paläont Abh 166:116‒138Google Scholar
  129. Thome KN (1998) Einführung in das Quartär: das Zeitalter der Gletscher. Spinger, BerlinCrossRefGoogle Scholar
  130. TUFLOW (2017) TUFLOW User Manual. BMT, Brisbane.Google Scholar
  131. Van den Berg MW, Beets DJ (1987) Saalian glacial deposits and morphology in the Netherlands. In: Van der Meer JJM (ed) Tills and glaciotectonics. Balkema, Rotterdam, pp 235–251Google Scholar
  132. Von der Brelie G, Rein U, Klusemann H et al (1956) Pleistozän-profile im Essener Raum. N Jb Geol Paläont Mh 113‒132Google Scholar
  133. Walder JS, Costa JE (1996) Outburst floods from glacier-dammed lakes: the effect of mode of lake drainage on flood magnitude. Earth Surf Process Land 21:701–723CrossRefGoogle Scholar
  134. Winsborrow MC, Clark CD, Stokes CR (2010) What controls the location of ice streams? Earth-Sci Rev 103:45–59CrossRefGoogle Scholar
  135. Winsemann J, Asprion U, Meyer T et al (2007) Facies characteristics of Middle Pleistocene (Saalian) ice-margin subaqueous fan and delta deposits, glacial Lake Leine, NW Germany. Sediment Geol 193:105–129CrossRefGoogle Scholar
  136. Winsemann J, Hornung JJ, Meinsen JC et al (2009) Anatomy of a subaqueous ice-contact fan and delta complex, Middle Pleistocene, NW Germany. Sedimentology 56:1041–1076CrossRefGoogle Scholar
  137. Winsemann J, Brandes C, Polom U (2011a) Response of a proglacial delta to rapid high-amplitude lake level change: an integration of outcrop data and high resolution shear-wave seismic. Basin Res 23:22–52CrossRefGoogle Scholar
  138. Winsemann J, Brandes C, Polom U et al (2011b) Depositional architecture and palaeogeographic significance of Middle Pleistocene glaciolacustrine ice marginal deposits in northwestern Germany: a synoptic overview. E&G Quat Sci J 60:212–235CrossRefGoogle Scholar
  139. Winsemann J, Lang J, Roskosch J et al (2015) Terrace styles and timing of terrace formation in the Weser and Leine valleys, northern Germany: response of a fluvial system to climate change and glaciation. Quat Sci Rev 123:31–57CrossRefGoogle Scholar
  140. Winsemann J, Alho P, Laamanen L et al (2016) Flow dynamics, sedimentation and erosion of glacial lake outburst floods along the Middle Pleistocene Scandinavian ice sheet (northern Central Europe). Boreas 45:260–283CrossRefGoogle Scholar
  141. Winsemann J, Lang J, Polom U et al (2018) Ice-marginal forced-regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture. Boreas 47:973–1002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Leibniz Universität Hannover, Institut für GeologieHannoverGermany

Personalised recommendations