Advertisement

Palaeostage Indicators in Rivers—An Illustrated Review

  • Jürgen HergetEmail author
Chapter
  • 283 Downloads
Part of the Geography of the Physical Environment book series (GEOPHY)

Abstract

Palaeostage indicators mark previous water levels. Knowledge about their characteristics and formation is of significant importance for a qualified interpretation. They might indicate the minimum or maximum values for the previous water level which might have been a low level during a drought, mean level or most frequently a high flood-level indicator. They can be divided into natural and man-made types with the first consisting of sedimentary and geomorphological structures, soils and jetsam consisting of vegetation and other debris. Man-made palaeostage indicators are marks on buildings, texts, illustrations and archaeological features like irrigation systems and bridges including technical infrastructure like sewage water systems from historic times. Due to uncertainties as to the accuracy of the reconstructed water levels each palaeostage might indicate, it is useful to carry out plausibility analyses and use more than only one indicator for interpretations—if available.

Keywords

Flood reconstruction Drought reconstruction Palaeohydrology Water level 

Notes

Acknowledgements

Comments and materials from several colleagues improved the manuscript and provided inspiration in the context recently and in previous years. Support in this context is appreciated from Gerardo Benito, Paul Carling, Libor Elleder, Renate Gerlach, Oliver Schlömer and Willem Tonen. The topic was discussed during the workshops EX-AQUA 2017 and 2018 “Palaeohydrological extreme events—evidence and archives” in Noida/India and Szeged/Hungary which both were kindly supported by the INQUA Commission on Terrestrial Processes, Deposits and History (TERPRO).

References

  1. Alexandre P (1987) Le climat en Europe au Moyen Âge. Ecole de Haute Etudes en Sciences Sociales, ParisGoogle Scholar
  2. Allen JRL (1984) Sedimentary structures—their character and physical basis. Elsevier, AmsterdamGoogle Scholar
  3. Baker VR (1974) Paleohydraulic interpretation of Quaternary alluvium near Golden, Colorado. Quatern Res 4:94–112CrossRefGoogle Scholar
  4. Baker VR (1976) Hydrogeomorphic methods for the regional evaluation of flood hazards. Environ Geol 1:261–281CrossRefGoogle Scholar
  5. Baker VR (2014) Palaeohydrology—introduction. In: Baker VR (ed) Palaeohydrology. International Association of Hydrological Science, Wallingford, pp 1–13Google Scholar
  6. Baker VR, Kochel RC, Patton PC (eds) (1988) Flood geomorphology. Wiley, New YorkGoogle Scholar
  7. Baker VR, Kochel RC (1988) Flood sedimentation in bedrock fluvial systems. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 123–137Google Scholar
  8. Ballesteros JA, Bodoque JM, Díez-Herrero A, Sanchez-Silva M, Stoffel M (2011) Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. J Hydrol 403:102–115CrossRefGoogle Scholar
  9. Ballesteros-Cánovas JA, Stoffel M, Spyt B, Janecka K, Kaczka RJ, Lempa M (2016) Paleoflood discharge reconstruction in Tatra Mountain streams. Geomorphology 272:92–101CrossRefGoogle Scholar
  10. Barriendos M, Coeur D (2004) Flood data reconstruction in historical times from non-instrumental sources in Spain and France. In: Benito G, Thorndycraft VR (eds) Systematic, palaeoflood and historical data for the improvement of flood risk estimation—methodological guidelines. Centro de Ciencias Medioambientales, Madrid, pp 29–42Google Scholar
  11. BGU (2011) Bayerische Gesellschaft für Unterwasserarchäologie (ed) Archäologie der Brücken/Archaeology of Bridges. Pustet, RegensburgGoogle Scholar
  12. Benito G, Macklin MG, Zielhofer C, Jones AF, Machado MJ (2015) Holocene flooding and climate change in the Mediterranean. CATENA 130:13–33CrossRefGoogle Scholar
  13. Benito G, Thorndycraft VR, Enzel Y et al (2004) Palaeoflood data collection and analysis. In: Benito G, Thorndycraft VR (eds) Systematic, palaeoflood and historical data for the improvement of flood risk estimation—methodological guidelines. Centro de Ciencias Medioambientales, Madrid, pp 15–27Google Scholar
  14. Bjornstad BN (2014) Ice-rafted erratics and bergmounds from Pleistocene outburst floods, Rattlesnake Mountain, Washington, USA. E&G Quatern Sci J 63:44–59Google Scholar
  15. Blume HP, Stahr K (2002) Auenböden. In: Blume HP, Brümmer GW, Schwertmann U et al (eds) Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 15th edn. Spektrum, Heidelberg, pp 509–510Google Scholar
  16. Bradley RS, Jones PD (eds) (1992) Climate since AD 1500. Routledge, LondonGoogle Scholar
  17. Brázdil R, Kundzewicz ZW, Benito G (2006) Historical hydrology for studying flood risk in Europe. Hydrol Sci J 51(5):739–764CrossRefGoogle Scholar
  18. Brázdil R, Kiss A, Luterbacher J et al (2018) Documentary data and the study of past droughts—a global state of the art. Clim Past 14:1915–1960CrossRefGoogle Scholar
  19. Bridge JS (2003) Rivers and floodplains—forms, processes and sedimentary record. Blackwell, OxfordGoogle Scholar
  20. Brown AG (1997) Alluvial geoarchaeology—floodplain archaeology and environmental change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Buisman J (1995) Duizend jaar weer, weind en water in de Lage Landen. Van Wijnen, FranekerGoogle Scholar
  22. Cain JM, Beatty MT (1968) The use of soil maps in the delineation of floodplain. Water Resour Res 4:173–182CrossRefGoogle Scholar
  23. Carling PA (1996a) A preliminary palaeohydraulic model applied to late Quaternary gravel dunes: Altai Mountains, Siberia. In: Branson J, Brown AG, Gregory KJ (eds) Global continental changes: the context of palaeohydrology, vol 115. Geological Society Special Publication, pp 165–179Google Scholar
  24. Carling PA (1996b) Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology 43:647–664CrossRefGoogle Scholar
  25. Carling PA, Tinkler K (1998) Conditions for the entrainment of cuboid boulders in bedrock streams—an historical review of literature with respect to recent investigations. In: Tinkler KJ, Wohl EE (eds) Rivers over rock—fluvial processes in bedrock channels. American Geophysical Union, Washington, pp 19–34CrossRefGoogle Scholar
  26. Carling PA, Martini P, Herget J et al (2009) Megaflood sedimentary valley fill—Altai Mountains, Siberia. In: Burr D, Carling P, Baker V (eds) Megaflooding on earth and mars. Cambridge University Press, Cambridge, pp 243–264CrossRefGoogle Scholar
  27. De Brue H, Poesen J, Notebaert B (2015) What was the transport mode of large boulders in the Campine Plateau and the lower Meuse valley during the mid-Pleistocene? Geomorphology 228:568–578CrossRefGoogle Scholar
  28. Deutsch M., Pörtge KH (2019) Hochwasser in Thüringen – Hochwassermarken und Hochwassergedenksteine. Thüringer Landesanstalt für Umwelt und Geologie Schriffenreihe 117:1–224Google Scholar
  29. Deutsch M, Glaser R, Pörtge KH et al (2010) Historische Hochwasserereignisse in Mitteleuropa. Geographische Rundschau 2010(3):18–24Google Scholar
  30. Deutsch M, Pörtge KH, Börngen M (2012) Bilder von der Flut - Anmerkungen zu Hochwasser- und Sturmflutdarstellungen auf historischen Ansichtskarten. Schriftenreihe der Deutschen Wasserhistorischen Gesellschaft 20:519–530Google Scholar
  31. Dey S (2014) Fluvial hydrodynamics—hydrodynamic and sediment transport phenomena. Springer, BerlinGoogle Scholar
  32. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, StuttgartGoogle Scholar
  33. Euler T, Herget J (2012) Controls on local scour and deposition induced by obstacles in fluvial environments. CATENA 91:35–46CrossRefGoogle Scholar
  34. Euler T, Herget J, Schlömer O et al (2017) Hydromorphological processes at submerged solitary boulder obstacles in streams. CATENA 157:250–267CrossRefGoogle Scholar
  35. Foulds SA, Griffiths HM, Macklin MG et al (2014) Geomorphological records of extreme floods and their relationship to decadal-scale climate change. Geomorphology 216:193–207CrossRefGoogle Scholar
  36. Gaume E, Borga M (2008) Post-flood field investigations in upland catchments after major flash floods—proposal of a methodology and illustrations. J Flood Risk Manag 1:175–189CrossRefGoogle Scholar
  37. George SS (2010) Tree rings as paleoflood and paleostage indicators. In: Stoffel M, Bollschweiler M, Butler D et al (eds) Tree rings and natural hazards. Springer, Dortrecht, pp 233–239CrossRefGoogle Scholar
  38. George SS, Nielsen E (2002) Flood ring evidence and its application to paleoflood hydrology of the Red River and Assiniboine River in Manitoba. Géog Phys Quatern 56:181–190Google Scholar
  39. Glaser R (2008) Klimageschichte Mitteleuropas - 1200 Jahre Wetter, Klima, Katastrophen. Theiss, DarmstadtGoogle Scholar
  40. Glaser R, Stangl H (2004) Climate and floods in Central Europe since AD 1000—data, methods, results and consequences. Surv Geophys 25:485–510CrossRefGoogle Scholar
  41. Gottesfeld AS (1996) British Columbia flood scars—maximum flood-stage indicators. Geomorphology 14:319–325CrossRefGoogle Scholar
  42. Greenbaum N, Schick AP, Baker VR (2000) The palaeoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel. Earth Surf Proc Land 25:951–971CrossRefGoogle Scholar
  43. Gregory KJ (1976) Lichens and the determination of river channel capacity. Earth Surf Proc 1:273–285CrossRefGoogle Scholar
  44. Herget J (2005) Reconstruction of ice-dammed lake outburst floods in the Altai-Mountains, Siberia. Geol Soc Am Spec Publ 386:1–118Google Scholar
  45. Herget J (2012) Am Anfang war die Sintflut - Hochwasserkatastrophen in der Geschichte. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  46. Herget J, Euler T, Roggenkamp T et al (2013) Obstacle marks as palaeohydraulic indicators of Pleistocene megafloods. Hydrol Res 44:300–317CrossRefGoogle Scholar
  47. House PK, Pearthree PA (1995) A geomorphological and hydrologic evaluation of an extraordinary flood discharge estimate—Bronco Creek, Arizona. Water Resour Res 31:3059–3073CrossRefGoogle Scholar
  48. House PK, Webb RH, Baker VR et al (eds) (2002) Ancient floods, modern hazards—principles and applications of paleoflood hydrology. American Geophysical Union, WashingtonGoogle Scholar
  49. Hupp CR (1988) Plant ecological aspects of flood geomorphology and paleoflood history. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 335–356Google Scholar
  50. Iverson RM, George DL, Logan M (2016) Debris flow runup on vertical barriers and adverse slopes. J Geophys Res Earth Surf 121:2333–2357CrossRefGoogle Scholar
  51. Jarrett RD, England JF (2002) Reliability of paleostage indicators for paleoflood studies. In: House PK, Webb RH, Baker VR et al (eds) Ancient floods, modern hazards—principles and applications of paleoflood hydrology. American Geophysical Union, Washington, pp 91–109Google Scholar
  52. Jarrett RD (1990) Paleohydrologic techniques used to define the spatial occurrence of floods. Geomorphology 3:181–195CrossRefGoogle Scholar
  53. Karcz I (1968) Fluviatile obstacle marks from the Wadis of the Negev (southern Israel). J Sediment Res 38:1000–1012Google Scholar
  54. Kleszen R, Chrobok SM (1989) Historische Hüttenstandorte im Mittelharz und ihre fluvial transportierbaren technogenen Gesteine. Z Angew Geol 35:24–31Google Scholar
  55. Knighton D (1998) Fluvial forms and processes—a new perspective. Arnold, LondonGoogle Scholar
  56. Kochel RC, Baker VR (1988) Paleoflood analysis using slackwater deposits. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 357–376Google Scholar
  57. Komar PD (1970) The competence of turbidity current flow. Geol Soc Am Bull 81:1555–1562CrossRefGoogle Scholar
  58. Lam D, Croke J, Thompson C et al (2017) Beyond the gorge—paleoflood reconstruction from slackwater deposits in a range of physiographic settings in subtropical Australia. Geomorphology 292:164–177CrossRefGoogle Scholar
  59. LUBW (2006) Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (ed): Historische Hochwassermarken in Baden-Württemberg. CD-ROMGoogle Scholar
  60. Lumbroso D, Gaume E (2012) Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J Hydrol 414(415):16–30CrossRefGoogle Scholar
  61. Murray-Wallace CV, Woodroffe CD (2014) Quaternary sea-level changes—a global perspective. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  62. Pfister C (1999) Wetternachhersage - 500 Jahre Klimavariationen und Naturkatastrophen.Haupt, BernGoogle Scholar
  63. Popper W (1951) The Cairo Nilometer. University of California Press, BerkeleyGoogle Scholar
  64. Raudkivi AJ (1982) Grundlagen des Sedimenttransportes. Springer, BerlinCrossRefGoogle Scholar
  65. Richardson K, Carling PA (2005) A typology of sculpted forms in open bedrock channels. Geol Soc Am Spec Pap 392:1–112Google Scholar
  66. Rickenmann D (1997) Schwemmholz und Hochwasser. Wasser Energie Luft 89(5–6):115–119Google Scholar
  67. Roggenkamp T (2016) Der Rhein zur Römerzeit - Wasserstände und Abflüsse des Mittel- und Niederrheins. Forschungen Geographie und Landeskunde 264:1–208Google Scholar
  68. Roggenkamp T, Herget J (2015a) An extreme drought in the year 69 AD on Lower Rhine—a quantitative reconstruction. Zeitschrift für Geomorphologie 59(Suppl 3):99–109CrossRefGoogle Scholar
  69. Roggenkamp T, Herget J (2015b) Historische Hochwasser der Ahr. Heimatkalender Kreis Ahrweiler 2015:150–154Google Scholar
  70. Roggenkamp T, Herget, J (2016) Middle and Lower Rhine in Roman times—a reconstruction of hydrological data based on historical sources. Environ Earth Sci 75:1–12Google Scholar
  71. Sangster H, Jones C, Macdonald N (2018) The co-evolution of historical source materials in the geophysical, hydrological and meteorological sciences: learning from the past moving forward. Prog Phys Geogr 42:61–82CrossRefGoogle Scholar
  72. Scarborough VL (2003) Flow of power—ancient water systems and landscapes. School of American Research, Santa FeGoogle Scholar
  73. Schloemer O, Herget J, Euler T (2019) Boundary condition control of fluvial obstacle mark formation—a framework from geoscientific perspective. Earth Surf Proc Land (in print)Google Scholar
  74. Seidlmayer S (2001) Historische und moderne Nilstände - Untersuchungen zu den Pegelablesungen des Nils von der Frühzeit bis zur Gegenwart. Achet, BerlinGoogle Scholar
  75. Sigafoss RS (1964) Botanical evidence of floods and flood-plain deposition. US Geological Survey Professional Paper 485-A:1–41Google Scholar
  76. Smith GA (1993) Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington. Geol Soc Am Bull 105:77–100CrossRefGoogle Scholar
  77. Thelen JL (1784) Ausführliche Nachricht von dem erschrecklichen Eisgange, und den Überschwemmungen des Rheines, welche im Jahre 1784 die Stadt Köln, und die umliegenden Gegenden getroffen. Haas, KölnGoogle Scholar
  78. Viollet PL (2007) Water engineering in ancient civilisations—5000 years of history. International Association of Hydraulic Engineering and Research, MadridCrossRefGoogle Scholar
  79. Weikinn C (1958) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850 - Teil 1 Zeitwende bis 1500. Akademie Verlag, BerlinGoogle Scholar
  80. Wetter O, Pfister C, Werner JP et al (2014) The year-long unprecedented European heat and drought of 1540—a worst case. Clim Change 125:349–363CrossRefGoogle Scholar
  81. Williams GP, Costa JE (1988) Geomorphic measurements after a flood. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 65–77Google Scholar
  82. Wolman MG (1971) Evaluating alternative techniques of floodplain mapping. Water Resour Res 7:1383–1392CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeographyBonn UniversityBonnGermany

Personalised recommendations