Skip to main content

Palaeostage Indicators in Rivers—An Illustrated Review

  • Chapter
  • First Online:
Palaeohydrology

Part of the book series: Geography of the Physical Environment ((GEOPHY))

Abstract

Palaeostage indicators mark previous water levels. Knowledge about their characteristics and formation is of significant importance for a qualified interpretation. They might indicate the minimum or maximum values for the previous water level which might have been a low level during a drought, mean level or most frequently a high flood-level indicator. They can be divided into natural and man-made types with the first consisting of sedimentary and geomorphological structures, soils and jetsam consisting of vegetation and other debris. Man-made palaeostage indicators are marks on buildings, texts, illustrations and archaeological features like irrigation systems and bridges including technical infrastructure like sewage water systems from historic times. Due to uncertainties as to the accuracy of the reconstructed water levels each palaeostage might indicate, it is useful to carry out plausibility analyses and use more than only one indicator for interpretations—if available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre P (1987) Le climat en Europe au Moyen Âge. Ecole de Haute Etudes en Sciences Sociales, Paris

    Google Scholar 

  • Allen JRL (1984) Sedimentary structures—their character and physical basis. Elsevier, Amsterdam

    Google Scholar 

  • Baker VR (1974) Paleohydraulic interpretation of Quaternary alluvium near Golden, Colorado. Quatern Res 4:94–112

    Article  Google Scholar 

  • Baker VR (1976) Hydrogeomorphic methods for the regional evaluation of flood hazards. Environ Geol 1:261–281

    Article  Google Scholar 

  • Baker VR (2014) Palaeohydrology—introduction. In: Baker VR (ed) Palaeohydrology. International Association of Hydrological Science, Wallingford, pp 1–13

    Google Scholar 

  • Baker VR, Kochel RC, Patton PC (eds) (1988) Flood geomorphology. Wiley, New York

    Google Scholar 

  • Baker VR, Kochel RC (1988) Flood sedimentation in bedrock fluvial systems. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 123–137

    Google Scholar 

  • Ballesteros JA, Bodoque JM, Díez-Herrero A, Sanchez-Silva M, Stoffel M (2011) Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. J Hydrol 403:102–115

    Article  Google Scholar 

  • Ballesteros-Cánovas JA, Stoffel M, Spyt B, Janecka K, Kaczka RJ, Lempa M (2016) Paleoflood discharge reconstruction in Tatra Mountain streams. Geomorphology 272:92–101

    Article  Google Scholar 

  • Barriendos M, Coeur D (2004) Flood data reconstruction in historical times from non-instrumental sources in Spain and France. In: Benito G, Thorndycraft VR (eds) Systematic, palaeoflood and historical data for the improvement of flood risk estimation—methodological guidelines. Centro de Ciencias Medioambientales, Madrid, pp 29–42

    Google Scholar 

  • BGU (2011) Bayerische Gesellschaft für Unterwasserarchäologie (ed) Archäologie der Brücken/Archaeology of Bridges. Pustet, Regensburg

    Google Scholar 

  • Benito G, Macklin MG, Zielhofer C, Jones AF, Machado MJ (2015) Holocene flooding and climate change in the Mediterranean. CATENA 130:13–33

    Article  Google Scholar 

  • Benito G, Thorndycraft VR, Enzel Y et al (2004) Palaeoflood data collection and analysis. In: Benito G, Thorndycraft VR (eds) Systematic, palaeoflood and historical data for the improvement of flood risk estimation—methodological guidelines. Centro de Ciencias Medioambientales, Madrid, pp 15–27

    Google Scholar 

  • Bjornstad BN (2014) Ice-rafted erratics and bergmounds from Pleistocene outburst floods, Rattlesnake Mountain, Washington, USA. E&G Quatern Sci J 63:44–59

    Google Scholar 

  • Blume HP, Stahr K (2002) Auenböden. In: Blume HP, Brümmer GW, Schwertmann U et al (eds) Scheffer/Schachtschabel Lehrbuch der Bodenkunde, 15th edn. Spektrum, Heidelberg, pp 509–510

    Google Scholar 

  • Bradley RS, Jones PD (eds) (1992) Climate since AD 1500. Routledge, London

    Google Scholar 

  • Brázdil R, Kundzewicz ZW, Benito G (2006) Historical hydrology for studying flood risk in Europe. Hydrol Sci J 51(5):739–764

    Article  Google Scholar 

  • Brázdil R, Kiss A, Luterbacher J et al (2018) Documentary data and the study of past droughts—a global state of the art. Clim Past 14:1915–1960

    Article  Google Scholar 

  • Bridge JS (2003) Rivers and floodplains—forms, processes and sedimentary record. Blackwell, Oxford

    Google Scholar 

  • Brown AG (1997) Alluvial geoarchaeology—floodplain archaeology and environmental change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buisman J (1995) Duizend jaar weer, weind en water in de Lage Landen. Van Wijnen, Franeker

    Google Scholar 

  • Cain JM, Beatty MT (1968) The use of soil maps in the delineation of floodplain. Water Resour Res 4:173–182

    Article  Google Scholar 

  • Carling PA (1996a) A preliminary palaeohydraulic model applied to late Quaternary gravel dunes: Altai Mountains, Siberia. In: Branson J, Brown AG, Gregory KJ (eds) Global continental changes: the context of palaeohydrology, vol 115. Geological Society Special Publication, pp 165–179

    Google Scholar 

  • Carling PA (1996b) Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology 43:647–664

    Article  Google Scholar 

  • Carling PA, Tinkler K (1998) Conditions for the entrainment of cuboid boulders in bedrock streams—an historical review of literature with respect to recent investigations. In: Tinkler KJ, Wohl EE (eds) Rivers over rock—fluvial processes in bedrock channels. American Geophysical Union, Washington, pp 19–34

    Chapter  Google Scholar 

  • Carling PA, Martini P, Herget J et al (2009) Megaflood sedimentary valley fill—Altai Mountains, Siberia. In: Burr D, Carling P, Baker V (eds) Megaflooding on earth and mars. Cambridge University Press, Cambridge, pp 243–264

    Chapter  Google Scholar 

  • De Brue H, Poesen J, Notebaert B (2015) What was the transport mode of large boulders in the Campine Plateau and the lower Meuse valley during the mid-Pleistocene? Geomorphology 228:568–578

    Article  Google Scholar 

  • Deutsch M., Pörtge KH (2019) Hochwasser in Thüringen – Hochwassermarken und Hochwassergedenksteine. Thüringer Landesanstalt für Umwelt und Geologie Schriffenreihe 117:1–224

    Google Scholar 

  • Deutsch M, Glaser R, Pörtge KH et al (2010) Historische Hochwasserereignisse in Mitteleuropa. Geographische Rundschau 2010(3):18–24

    Google Scholar 

  • Deutsch M, Pörtge KH, Börngen M (2012) Bilder von der Flut - Anmerkungen zu Hochwasser- und Sturmflutdarstellungen auf historischen Ansichtskarten. Schriftenreihe der Deutschen Wasserhistorischen Gesellschaft 20:519–530

    Google Scholar 

  • Dey S (2014) Fluvial hydrodynamics—hydrodynamic and sediment transport phenomena. Springer, Berlin

    Google Scholar 

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. Ulmer, Stuttgart

    Google Scholar 

  • Euler T, Herget J (2012) Controls on local scour and deposition induced by obstacles in fluvial environments. CATENA 91:35–46

    Article  Google Scholar 

  • Euler T, Herget J, Schlömer O et al (2017) Hydromorphological processes at submerged solitary boulder obstacles in streams. CATENA 157:250–267

    Article  Google Scholar 

  • Foulds SA, Griffiths HM, Macklin MG et al (2014) Geomorphological records of extreme floods and their relationship to decadal-scale climate change. Geomorphology 216:193–207

    Article  Google Scholar 

  • Gaume E, Borga M (2008) Post-flood field investigations in upland catchments after major flash floods—proposal of a methodology and illustrations. J Flood Risk Manag 1:175–189

    Article  Google Scholar 

  • George SS (2010) Tree rings as paleoflood and paleostage indicators. In: Stoffel M, Bollschweiler M, Butler D et al (eds) Tree rings and natural hazards. Springer, Dortrecht, pp 233–239

    Chapter  Google Scholar 

  • George SS, Nielsen E (2002) Flood ring evidence and its application to paleoflood hydrology of the Red River and Assiniboine River in Manitoba. Géog Phys Quatern 56:181–190

    Google Scholar 

  • Glaser R (2008) Klimageschichte Mitteleuropas - 1200 Jahre Wetter, Klima, Katastrophen. Theiss, Darmstadt

    Google Scholar 

  • Glaser R, Stangl H (2004) Climate and floods in Central Europe since AD 1000—data, methods, results and consequences. Surv Geophys 25:485–510

    Article  Google Scholar 

  • Gottesfeld AS (1996) British Columbia flood scars—maximum flood-stage indicators. Geomorphology 14:319–325

    Article  Google Scholar 

  • Greenbaum N, Schick AP, Baker VR (2000) The palaeoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel. Earth Surf Proc Land 25:951–971

    Article  Google Scholar 

  • Gregory KJ (1976) Lichens and the determination of river channel capacity. Earth Surf Proc 1:273–285

    Article  Google Scholar 

  • Herget J (2005) Reconstruction of ice-dammed lake outburst floods in the Altai-Mountains, Siberia. Geol Soc Am Spec Publ 386:1–118

    Google Scholar 

  • Herget J (2012) Am Anfang war die Sintflut - Hochwasserkatastrophen in der Geschichte. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Herget J, Euler T, Roggenkamp T et al (2013) Obstacle marks as palaeohydraulic indicators of Pleistocene megafloods. Hydrol Res 44:300–317

    Article  Google Scholar 

  • House PK, Pearthree PA (1995) A geomorphological and hydrologic evaluation of an extraordinary flood discharge estimate—Bronco Creek, Arizona. Water Resour Res 31:3059–3073

    Article  Google Scholar 

  • House PK, Webb RH, Baker VR et al (eds) (2002) Ancient floods, modern hazards—principles and applications of paleoflood hydrology. American Geophysical Union, Washington

    Google Scholar 

  • Hupp CR (1988) Plant ecological aspects of flood geomorphology and paleoflood history. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 335–356

    Google Scholar 

  • Iverson RM, George DL, Logan M (2016) Debris flow runup on vertical barriers and adverse slopes. J Geophys Res Earth Surf 121:2333–2357

    Article  Google Scholar 

  • Jarrett RD, England JF (2002) Reliability of paleostage indicators for paleoflood studies. In: House PK, Webb RH, Baker VR et al (eds) Ancient floods, modern hazards—principles and applications of paleoflood hydrology. American Geophysical Union, Washington, pp 91–109

    Google Scholar 

  • Jarrett RD (1990) Paleohydrologic techniques used to define the spatial occurrence of floods. Geomorphology 3:181–195

    Article  Google Scholar 

  • Karcz I (1968) Fluviatile obstacle marks from the Wadis of the Negev (southern Israel). J Sediment Res 38:1000–1012

    Google Scholar 

  • Kleszen R, Chrobok SM (1989) Historische Hüttenstandorte im Mittelharz und ihre fluvial transportierbaren technogenen Gesteine. Z Angew Geol 35:24–31

    Google Scholar 

  • Knighton D (1998) Fluvial forms and processes—a new perspective. Arnold, London

    Google Scholar 

  • Kochel RC, Baker VR (1988) Paleoflood analysis using slackwater deposits. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 357–376

    Google Scholar 

  • Komar PD (1970) The competence of turbidity current flow. Geol Soc Am Bull 81:1555–1562

    Article  Google Scholar 

  • Lam D, Croke J, Thompson C et al (2017) Beyond the gorge—paleoflood reconstruction from slackwater deposits in a range of physiographic settings in subtropical Australia. Geomorphology 292:164–177

    Article  Google Scholar 

  • LUBW (2006) Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (ed): Historische Hochwassermarken in Baden-Württemberg. CD-ROM

    Google Scholar 

  • Lumbroso D, Gaume E (2012) Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J Hydrol 414(415):16–30

    Article  Google Scholar 

  • Murray-Wallace CV, Woodroffe CD (2014) Quaternary sea-level changes—a global perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pfister C (1999) Wetternachhersage - 500 Jahre Klimavariationen und Naturkatastrophen.Haupt, Bern

    Google Scholar 

  • Popper W (1951) The Cairo Nilometer. University of California Press, Berkeley

    Google Scholar 

  • Raudkivi AJ (1982) Grundlagen des Sedimenttransportes. Springer, Berlin

    Book  Google Scholar 

  • Richardson K, Carling PA (2005) A typology of sculpted forms in open bedrock channels. Geol Soc Am Spec Pap 392:1–112

    Google Scholar 

  • Rickenmann D (1997) Schwemmholz und Hochwasser. Wasser Energie Luft 89(5–6):115–119

    Google Scholar 

  • Roggenkamp T (2016) Der Rhein zur Römerzeit - Wasserstände und Abflüsse des Mittel- und Niederrheins. Forschungen Geographie und Landeskunde 264:1–208

    Google Scholar 

  • Roggenkamp T, Herget J (2015a) An extreme drought in the year 69 AD on Lower Rhine—a quantitative reconstruction. Zeitschrift für Geomorphologie 59(Suppl 3):99–109

    Article  Google Scholar 

  • Roggenkamp T, Herget J (2015b) Historische Hochwasser der Ahr. Heimatkalender Kreis Ahrweiler 2015:150–154

    Google Scholar 

  • Roggenkamp T, Herget, J (2016) Middle and Lower Rhine in Roman times—a reconstruction of hydrological data based on historical sources. Environ Earth Sci 75:1–12

    Google Scholar 

  • Sangster H, Jones C, Macdonald N (2018) The co-evolution of historical source materials in the geophysical, hydrological and meteorological sciences: learning from the past moving forward. Prog Phys Geogr 42:61–82

    Article  Google Scholar 

  • Scarborough VL (2003) Flow of power—ancient water systems and landscapes. School of American Research, Santa Fe

    Google Scholar 

  • Schloemer O, Herget J, Euler T (2019) Boundary condition control of fluvial obstacle mark formation—a framework from geoscientific perspective. Earth Surf Proc Land (in print)

    Google Scholar 

  • Seidlmayer S (2001) Historische und moderne Nilstände - Untersuchungen zu den Pegelablesungen des Nils von der Frühzeit bis zur Gegenwart. Achet, Berlin

    Google Scholar 

  • Sigafoss RS (1964) Botanical evidence of floods and flood-plain deposition. US Geological Survey Professional Paper 485-A:1–41

    Google Scholar 

  • Smith GA (1993) Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington. Geol Soc Am Bull 105:77–100

    Article  Google Scholar 

  • Thelen JL (1784) Ausführliche Nachricht von dem erschrecklichen Eisgange, und den Überschwemmungen des Rheines, welche im Jahre 1784 die Stadt Köln, und die umliegenden Gegenden getroffen. Haas, Köln

    Google Scholar 

  • Viollet PL (2007) Water engineering in ancient civilisations—5000 years of history. International Association of Hydraulic Engineering and Research, Madrid

    Book  Google Scholar 

  • Weikinn C (1958) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850 - Teil 1 Zeitwende bis 1500. Akademie Verlag, Berlin

    Google Scholar 

  • Wetter O, Pfister C, Werner JP et al (2014) The year-long unprecedented European heat and drought of 1540—a worst case. Clim Change 125:349–363

    Article  Google Scholar 

  • Williams GP, Costa JE (1988) Geomorphic measurements after a flood. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 65–77

    Google Scholar 

  • Wolman MG (1971) Evaluating alternative techniques of floodplain mapping. Water Resour Res 7:1383–1392

    Article  Google Scholar 

Download references

Acknowledgements

Comments and materials from several colleagues improved the manuscript and provided inspiration in the context recently and in previous years. Support in this context is appreciated from Gerardo Benito, Paul Carling, Libor Elleder, Renate Gerlach, Oliver Schlömer and Willem Tonen. The topic was discussed during the workshops EX-AQUA 2017 and 2018 “Palaeohydrological extreme events—evidence and archives” in Noida/India and Szeged/Hungary which both were kindly supported by the INQUA Commission on Terrestrial Processes, Deposits and History (TERPRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Herget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herget, J. (2020). Palaeostage Indicators in Rivers—An Illustrated Review. In: Herget, J., Fontana, A. (eds) Palaeohydrology. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-23315-0_10

Download citation

Publish with us

Policies and ethics