Skip to main content

An Atomic-Scale Perspective of the Challenging Microstructure of YBa2Cu3O7−x Thin Films

Abstract

Defects are ubiquitous in materials. In high-temperature superconductors (HTS), certain defects play an important role; by pinning quantized vortices in the presence of magnetic field, they enable dissipationless transport of high current densities. Therefore, determining the atomic structure of defects as well as understanding how they behave and interact is critical to control the physical properties of HTS. This chapter presents an in-depth look into the complex microstructure of YBa2Cu3O7−x, a paradigmatic HTS, at different length scales using aberration-corrected scanning transmission electron microscopy (STEM). Furthermore, a synergistic combination of aberration-corrected STEM imaging, electron energy loss spectroscopy, X-ray magnetic circular dichroism, and density-functional-theory calculations have recently revealed point defects, such as individual vacancies and complex vacancy clusters, which affect the host crystal structure on a single unit-cell level. One such defect consisting of a complex of copper and oxygen vacancies is also shown to induce dilute ferromagnetism in YBCO HTS, which opens a playground to study the interaction between the two highly antagonistic phenomena by atomic-scale control over these defects.

Keywords

  • Superconductivity
  • Magnetism
  • High-temperature superconductors YBCO
  • STEM-EELS
  • XMCD
  • DFT
  • Microstructure
  • Defects
  • Oxygen vacancies

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-23303-7_7
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-23303-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10
Fig. 7.11
Fig. 7.12
Fig. 7.13
Fig. 7.14
Fig. 7.15

References

  1. D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B 41, 4038 (1990)

    Google Scholar 

  2. M.P. Paranthaman, T. Izumi, MRS Bull. 29, 533 (2004)

    Google Scholar 

  3. X. Song, Z. Chen, S.-I. Kim, D.M. Feldmann, D. Larbalestier, J. Reeves, Y. Xie, V. Selvamanickam, Appl. Phys. Lett. 88, 212508 (2006)

    Google Scholar 

  4. Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi, T. Muroga, S. Miyata, T. Kato, T. Hirayama, Y. Shiohara, Appl. Phys. Lett. 87, 132502 (2005)

    Google Scholar 

  5. S. Kang, A. Goyal, J. Li, A.A. Gapud, P.M. Martin, L. Heatherly, J.R. Thompson, D.K. Christen, F.A. List, M. Paranthaman, D.F. Lee, Science 311, 1911 (2006)

    Google Scholar 

  6. T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen, M. Sumption, Nature 430, 867 (2004)

    Google Scholar 

  7. J.L. MacManus-Driscoll, S.R. Foltyn, Q.X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M.E. Hawley, M.P. Maley, D.E. Peterson, Nat. Mater. 3, 439 (2004)

    Google Scholar 

  8. P. Mele, R. Guzman, J. Gazquez, T. Puig, X. Obradors, S. Saini, Y. Yoshida, M. Mukaida, A. Ichinose, K. Matsumoto, M. Idries Adam, Supercond. Sci. Technol. 28, 024002 (2015)

    Google Scholar 

  9. A. Llordés, A. Palau, J. Gázquez, M. Coll, Nat. Mater. 11, 329 (2012)

    Google Scholar 

  10. C. Cantoni, Y. Gao, S.H. Wee, E.D. Specht, J. Gazquez, J. Meng, S.J. Pennycook, A. Goyal, ACS Nano 5, 4783 (2011)

    Google Scholar 

  11. R. Guzman, J. Gazquez, V. Rouco, A. Palau, C. Magen, M. Varela, J. Arbiol, X. Obradors, T. Puig, Appl. Phys. Lett. 102, 081906 (2013)

    Google Scholar 

  12. J. Gazquez, R. Guzman, R. Mishra, E. Bartolomé, J. Salafranca, C. Magén, M. Varela, M. Coll, A. Palau, S.M. Valvidares, P. Gargiani, E. Pellegrin, J. Herrero-Martin, S.J. Pennycook, S.T. Pantelides, T. Puig, X. Obradors, Adv. Sci. 3, 1500295 (2016)

    Google Scholar 

  13. R. Guzman, J. Gazquez, B. Mundet, M. Coll, X. Obradors, T. Puig, Phys. Rev. Mater. 1, 024801 (2017)

    Google Scholar 

  14. A.K. Jha, K. Matsumoto, T. Horide, S. Saini, P. Mele, A. Ichinose, Y. Yoshida, S. Awaji, J. Appl. Phys. 122, 093905 (2017)

    Google Scholar 

  15. T. Horide, F. Kametani, S. Yoshioka, T. Kitamura, K. Matsumoto, ACS Nano 11, 1780 (2017)

    Google Scholar 

  16. T. Maeda, K. Kaneko, K. Yamada, A. Roy, Y. Sato, R. Teranishi, T. Kato, T. Izumi, Y. Shiohara, Ultramicroscopy 176, 151 (2017)

    Google Scholar 

  17. G. Deutscher, Appl. Phys. Lett. 96, 1 (2010)

    Google Scholar 

  18. A. Llordés, A. Palau, J. Gázquez, M. Coll, R. Vlad, A. Pomar, J. Arbiol, R. Guzmán, S. Ye, V. Rouco, F. Sandiumenge, S. Ricart, T. Puig, M. Varela, D. Chateigner, J. Vanacken, J. Gutiérrez, V. Moshchalkov, G. Deutscher, C. Magen, X. Obradors, Nat. Mater. 11, 329 (2012)

    Google Scholar 

  19. S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy (Springer, New York, 2011)

    Google Scholar 

  20. S.J. Pennycook, D.E. Jesson, Ultramicroscopy 37, 14 (1991)

    Google Scholar 

  21. P.D. Nellist, S.J. Pennycook, Ultramicroscopy 78, 111 (1999)

    Google Scholar 

  22. P.D. Nellist, S.J. Pennycook, Science 274, 413 (1996)

    Google Scholar 

  23. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Proc. Natl. Acad. Sci. U. S. A. 103, 3044 (2006)

    Google Scholar 

  24. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe, Nat. Mater. 10, 278 (2011)

    Google Scholar 

  25. W.M. Temmerman, H. Winter, Z. Szotek, A. Svane, Phys. Rev. Lett. 86, 2435 (2001)

    Google Scholar 

  26. R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. B 73, 180505 (2006)

    Google Scholar 

  27. N.D. Browning, J. Yuan, L.M. Brown, Phys. C Supercond. 202, 12 (1992)

    Google Scholar 

  28. N. Gauquelin, D.G. Hawthorn, G.A. Sawatzky, R.X. Liang, D.A. Bonn, W.N. Hardy, G.A. Botton, Nat. Commun. 5, 4275 (2014)

    Google Scholar 

  29. D.G. Hawthorn, K.M. Shen, J. Geck, D.C. Peets, H. Wadati, J. Okamoto, S.-W. Huang, D.J. Huang, H.-J. Lin, J.D. Denlinger, R. Liang, D.A. Bonn, W.N. Hardy, G.A. Sawatzky, Phys. Rev. B 84, 075125 (2011)

    Google Scholar 

  30. M. Grioni, J.F. van Acker, M.T. Czyžyk, J.C. Fuggle, Phys. Rev. B 45, 3309 (1992)

    Google Scholar 

  31. P. Cayado, B. Mundet, H. Eloussifi, F. Vallés, M. Coll, S. Ricart, J. Gázquez, A. Palau, P. Roura, J. Farjas, T. Puig, X. Obradors, Supercond. Sci. Technol. 30, 1361 (2017)

    Google Scholar 

  32. S.H. Wee, Y.L. Zuev, C. Cantoni, A. Goyal, Sci. Rep. 3, 2310 (2013)

    Google Scholar 

  33. A.A. Gapud, D. Kumar, S.K. Viswanathan, C. Cantoni, M. Varela, J. Abiade, S.J. Pennycook, D.K. Christen, Supercond. Sci. Technol. 18, 1502 (2005)

    Google Scholar 

  34. J. Gutiérrez, A. Llordés, J. Gázquez, M. Gibert, N. Romà, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, X. Obradors, Nat. Mater. 6, 1893 (2007)

    Google Scholar 

  35. X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, X. Granados, Supercond. Sci. Technol. 25, 123001 (2012)

    Google Scholar 

  36. K. Matsumoto, P. Mele, Supercond. Sci. Technol. 23, 14001 (2010)

    Google Scholar 

  37. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, Supercond. Sci. Technol. 21, 015019 (2008)

    Google Scholar 

  38. T. Horide, N. Sakamoto, A. Ichinose, K. Otsubo, T. Kitamura, K. Matsumoto, Supercond. Sci. Technol. 29, 105010 (2016)

    Google Scholar 

  39. D.M. Feldmann, T.G. Holesinger, B. Maiorov, S.R. Foltyn, J.Y. Coulter, I. Apodaca, Supercond. Sci. Technol. 23, 095004 (2010)

    Google Scholar 

  40. M. Coll, S. Ye, V. Rouco, A. Palau, R. Guzman, J. Gazquez, J. Arbiol, H. Suo, T. Puig, X. Obradors, Supercond. Sci. Technol. 26, 015001 (2013)

    Google Scholar 

  41. D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang, 430, 657 (2004)

    Google Scholar 

  42. P.J. Phillips, M. De Graef, L. Kovarik, A. Agrawal, W. Windl, M.J. Mills, Ultramicroscopy 116, 47 (2012)

    Google Scholar 

  43. H.W. Zandbergen, R. Gronsky, G. Thomas, Phys. Status Solidi 105, 207 (1988)

    Google Scholar 

  44. H.W. Zandbergen, R. Gronsky, K. Wang, G. Thomas, Nature 331, 596 (1988)

    Google Scholar 

  45. J. Rabier, P.D. Tall, M.F. Denanot, Philos. Mag. A 67, 1021 (1993)

    Google Scholar 

  46. J. Tafto, M. Suenaga, R.L. Sabatini, Appl. Phys. Lett. 52, 667 (1988)

    Google Scholar 

  47. P. Hirel, P. Marton, M. Mrovec, C. Elsässer, Acta Mater. 58, 6072 (2010)

    Google Scholar 

  48. F. Sandiumenge, T. Puig, J. Rabier, J. Plain, X. Obradors, Adv. Mater. 12, 375 (2000)

    Google Scholar 

  49. F. Sandiumenge, J. Rabier, Studies of High Temperature Superconductors (Nova Science, Narlikar, 1999)

    Google Scholar 

  50. T. Puig, J. Gutiérrez, A. Pomar, A. Llordés, J. Gázquez, S. Ricart, F. Sandiumenge, X. Obradors, Supercond. Sci. Technol. 21, 34008 (2008)

    Google Scholar 

  51. J.A. Xia, N.J. Long, N.M. Strickland, P. Hoefakker, E.F. Talantsev, X. Li, W. Zhang, T. Kodenkandath, Y. Huang, M.W. Rupich, Supercond. Sci. Technol. 20, 880 (2007)

    Google Scholar 

  52. A. Goyal, S. Kang, K.J. Leonard, P.M. Martin, A.A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E.D. Specht, J.R. Thompson, D.K. Christen, S.J. Pennycook, F.A. List, Supercond. Sci. Technol. 18, 1533 (2005)

    Google Scholar 

  53. T.G. Holesinger, L. Civale, B. Maiorov, D.M. Feldmann, J.Y. Coulter, D.J. Miller, V.A. Maroni, Z. Chen, D.C. Larbalestier, R. Feenstra, X. Li, Y. Huang, T. Kodenkandath, W. Zhang, M.W. Rupich, A.P. Malozemoff, Adv. Mater. 20, 391 (2008)

    Google Scholar 

  54. H. Yamasaki, K. Ohki, I. Yamaguchi, M. Sohma, W. Kondo, H. Matsui, T. Manabe, T. Kumagai, Supercond. Sci. Technol. 23, 105004 (2010)

    Google Scholar 

  55. E.D. Specht, A. Goyal, J. Li, P.M. Martin, X. Li, M.W. Rupich, Appl. Phys. Lett. 89, 2006 (2006)

    Google Scholar 

  56. F. Vallès, A. Palau, V. Rouco, B. Mundet, X. Obradors, T. Puig, Sci. Rep. 8, 5924 (2018)

    Google Scholar 

  57. C.J. Jou, J. Washburn, J. Mater. Res. 4, 795 (1989)

    Google Scholar 

  58. V. Rouco, A. Palau, R. Guzman, J. Gazquez, M. Coll, X. Obradors, T. Puig, Supercond. Sci. Technol. 27, 125009 (2014)

    Google Scholar 

  59. M.J.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998)

    Google Scholar 

  60. G. Deutscher, J. Appl. Phys. 111, 112603 (2012)

    Google Scholar 

  61. E. Bartolomé, P. Cayado, E. Solano, C. Mocuta, S. Ricart, B. Mundet, M. Coll, J. Gázquez, A. Meledin, G. van Tendeloo, S.M. Valvidares, J. Herrero-Martín, P. Gargiani, E. Pellegrin, C. Magén, T. Puig, X. Obradors, Adv. Electron. Mater. 3, 1700037 (2017)

    Google Scholar 

  62. J.C. Cheang Wong, C. Ortega, J. Siejka, I. Trimaille, A. Sacuto, L.M. Mercandalli, F. Mayca, J. Alloys Compd. 195, 675 (1993)

    Google Scholar 

  63. A.P. Shapovalov, Y.M. Boguslavskij, A.I. Ruban, G.G. Gridneva, V.S. Melnikov, N.P. Pshentsova, Supercond. Sci. Technol. 5, 283 (1992)

    Google Scholar 

  64. J.D. Jorgensen, M.A. Beno, D.G. Hinks, L. Soderholm, K.J. Volin, R.L. Hitterman, J.D. Grace, I.K. Schuller, C.U. Segre, K. Zhang, M.S. Kleefisch, Phys. Rev. B 36, 3608 (1987)

    Google Scholar 

  65. J.D. Jorgensen, H. Shaked, D.G. Hinks, B. Dabrowski, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, W.K. Kwok, L.H. Nunez, H. Claus, Phys. C Supercond. 578, 153–155 (1988)

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the MICIN (NANOSELECT, DUARFS MAT2017-83468-R and MAT2014-51778- C2-1-R), Generalitat de Catalunya (2014SGR 753 and Xarmae), and the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). They also acknowledge financial support from the Spanish Ministry of Economy, Industry and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496). STEM imaging and analysis at 200 kV was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and STEM imaging at 100 kV was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. STEM imaging and analysis at 300 kV was conducted in the Laboratorio de Microscopías Avanzadas (LMA) at Instituto de Nanociencia de Aragón (INA) at the University of Zaragoza. J.G. also acknowledges the Ramón y Cajal program (RYC-2012-11709). The work at Washington University (S.T.H. and R.M.) was supported by the National Science Foundation (NSF) grant number DMR-1806147. This work used the computational resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grants ACI-1053575 and ACI-1548562.

The authors are grateful to all the collaborators who made this work possible over the years, especially to Teresa Puig, Xavier Obradors, Mariona Coll, Anna Palau, Anna Llordes, Juan Salafranca, Maria Varela, Juan Carlos Idrobo, Cesar Magen, Pablo Cayado, S. Manuel Valvidares, Pierluigi Gargiani, Eric Pellegrin, Javier. Herrero-Martin, Wolfgang Windl, Matt Chisholm, Sokrates T. Pantelides, and Stephen J. Pennycook.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mundet, B. et al. (2020). An Atomic-Scale Perspective of the Challenging Microstructure of YBa2Cu3O7−x Thin Films. In: , et al. Superconductivity. Springer, Cham. https://doi.org/10.1007/978-3-030-23303-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23303-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23302-0

  • Online ISBN: 978-3-030-23303-7

  • eBook Packages: EngineeringEngineering (R0)