Skip to main content

Modeling of Phosphorus Dynamics in Dryland Ecosystems

  • Chapter
  • First Online:
  • 1210 Accesses

Abstract

The availability of phosphorus (P) in soils can be one of the primary factors limiting growth for ecosystems located in both humid and arid climates (Chadwick et al. 1999; Wardle et al. 2004; Crews et al. 1995; Vitousek et al. 2010; He et al. 2014). While P and nitrogen (N ) can be co-limiting nutrients in some terrestrial ecosystems, P can be equally as limiting or more limiting in dryland areas especially those that have calcareous soils or soils with a high pH (Belnap 2011). Over the next century, the extent of P limitation will likely increase globally due to the projected increase in inputs of anthropogenic N (by ~120%) over the next 50 years. These changes could cause a shift from some ecosystems being primarily N limited to being limited by nutrients such as P (Galloway et al. 2004; Mahowald et al. 2008; Vitousek et al. 2010). However, it is not clear how an increase in global aridity over the twenty-first century will affect dryland areas (Chap. 21). For instance, Delgado-Baquerizo et al. (2013) examined how aridity affects the balance between C, N, and P in soils collected from 224 dryland sites across all continents except Antarctica. They found a negative effect of aridity on the concentration of soil organic C and total N but a positive effect on the concentration of inorganic P. They suggest that this is due to aridity being negatively related to plant cover, which may favor physical processes such as rock weathering, and oftentimes a major source of P to ecosystems, over biological processes such as litter decomposition that provide more C and N. It has been estimated that 42% of the world’s croplands are located within drylands (see Chap. 19). About 30–40% of global cropland is primarily P limited with large regions being located in semiarid Africa and Asian steppes (Runge-Metzger 1995; Von Uexkull and Mutert 1998; MacDonald et al. 2011; Fig. 12.1). In agricultural systems, P limitations can be overcome in the short term by utilizing fertilizer to stimulate crop yields; yet despite this, MacDonald et al. (2011) found that global agronomic inputs of P fertilizer (14.2 Tg of Py−1) and manure (9.6 Tg of Py−1) collectively exceed P removal by harvested crops (12.3 Tg of Py−1). Moreover, the supply of rock phosphate needed to create P fertilizer is not limitless and could be depleted in as few as 50 years (Vance et al. 2003; Cordell et al. 2009). Thus, it is important to understand the controls on P availability in dryland ecosystems because of both the potentially expanding extent of P-limited systems and the finite supply of P for fertilizer, which is many times needed during the agricultural production process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos:439–449

    Google Scholar 

  • Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl Soil Ecol 29:73–83

    Article  Google Scholar 

  • Belnap J (2011) Biological phosphorus cycling in dryland regions. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Berg AS, Joern BC (2006) Sorption dynamics of organic and inorganic phosphorus compounds in soil. J Environ Qual 35:1855–1862

    Article  CAS  PubMed  Google Scholar 

  • Bosatta E, Ågren GI (1991) Theoretical analysis of carbon and nutrient interactions in soils under energy-limited conditions. Soil Sci Soc Am J 55(3):728–733

    Article  CAS  Google Scholar 

  • Brady N, Weil R (2008) The nature and properties of soils, 14th edn. Prentice Hall, Upper Saddle River, NJ, p 975

    Google Scholar 

  • Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, Chichester

    Google Scholar 

  • Buendia C, Kleidon A, Porporato A (2010) The role of tectonic uplift, climate, and vegetation in the long-term terrestrial phosphorous cycle. Biogeosciences 7(6):2025

    Article  CAS  Google Scholar 

  • Caldwell MM, Eissenstat DM, Richards JH, Allen MF (1985) Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspace between shrub and grass. Science (Washington) 229(4711):384–386

    Article  CAS  Google Scholar 

  • Campo J, Jaramillo VJ, Maass JM (1998) Pulses of soil phosphorus availability in a Mexican tropical dry forest: effects of seasonality and level of wetting. Oecologia 115(1–2):167–172

    Article  PubMed  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397(6719):491–497

    Article  CAS  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, vol 436. Springer, New York, NY

    Google Scholar 

  • Charley JL, Cowling SW (1968) Changes in soil nutrient status resulting from overgrazing and their consequences in plant communities of semi-arid areas. Proc Ecol Soc Austr 3:28–38

    Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177(1):539–557

    Article  Google Scholar 

  • Cole CV, Innis GS, Stewart JWB (1977) Simulation of phosphorus cycling in semiarid grasslands. Ecology 58(1):1–15

    Article  CAS  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang. https://doi.org/10.1016/j.gloenvcha.2008.10.09

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–1424

    Article  Google Scholar 

  • Cross AF, Schlesinger WH (2001) Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 52(2):155–172

    Article  CAS  Google Scholar 

  • D’Odorico P, Laio F, Porporato A, Rodriguez-Iturbe I (2003) Hydrologic controls on soil carbon and nitrogen cycles. II. A case study. Adv Water Resour 26(1):59–70

    Article  Google Scholar 

  • D’Odorico P, Laio F, Ridolfi L (2005) Noise-induced stability in dryland plant ecosystems. Proc Natl Acad Sci U S A 102(31):10819–10822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013) Global desertification: drivers and feedbacks. Adv Water Resour 51:326–344

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Das R, Lawrence D, D’Odorico P, DeLonge M (2011) Impact of land use change on atmospheric P inputs in a tropical dry forest. J Geophys Res. https://doi.org/10.1029/2010JG001403

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502(7473):672–676

    Article  CAS  PubMed  Google Scholar 

  • DeLonge MS (2007) Hydrologically-influenced feedbacks between phosphorus and vegetation in dry tropical forests. Master’s Thesis, University of Virginia, Charlottesville, Virginia, 75 p

    Google Scholar 

  • Eagleson PS (1978) Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase. Water Resour Res 14(5):722–730

    Article  Google Scholar 

  • Emerson AA (2010) Atmospheric inputs and plant nutrient uptake along a three million year semi-arid substrate age gradient. Dissertation, Northern Arizona University

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226

    Article  CAS  Google Scholar 

  • Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA et al (2009) Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. Agric For Meteorol 149(8):1365–1376

    Article  Google Scholar 

  • Grierson PF, Comerford NB, Jokela EJ (1998) Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida spodosol. Soil Biol Biochem 30(10):1323–1331

    Article  CAS  Google Scholar 

  • Harrison AF (1987) Mineralisation of organic phosphorus in relation to soil factors, determined using isotopic 32P labeling. In: Rowland AP (ed) Chemical analysis in environmental research. NERC/ITE, Abbotts Ripton, pp 84–87

    Google Scholar 

  • He M, Dijkstra FA, Zhang K, Li X, Tan H, Gao Y, Li G (2014) Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Sci Rep 4:6932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiernaux P, Bielders CL, Valentin C, Bationo A, Fernández-Rivera S (1999) Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian rangelands. J Arid Environ 41(3):231–245

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trees 7(10):336–339

    CAS  Google Scholar 

  • Jakobsen I, Chen BD, Munkvold L, Lundsgaard T, Zhu YG (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using root hairless barley mutant. Plant Cell Environ 28:928–938

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, 5th edn. Marcel Decker, New York

    Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53(1):51–77

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85(9):2380–2389

    Article  Google Scholar 

  • Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Buenemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in phosphorus cycling, Soil Biology, 26. Springer, Heidelberg, pp 169–198

    Chapter  Google Scholar 

  • Jungk A, Claassen N (1997) Ion diffusion in the soil-root system. Adv Agron 61:53–110

    Article  CAS  Google Scholar 

  • Kieft TL (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19(2):119–126

    Article  Google Scholar 

  • Krauskopf K, Bird D (1995) Surface chemistry: the solution-mineral interface. Introduction to geochemistry (Ed MG-HI Editions) Mc Graw-Hill International Editions. Earth sciences and geology series, pp 135–163

    Google Scholar 

  • Lajtha K, Schlesinger WH (1988) The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 69(1):24–39

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23(2):95–103

    Article  PubMed  Google Scholar 

  • Lawrence D, Schlesinger WH (2001) Changes in soil phosphorus during 200 years of shifting cultivation in Indonesia. Ecology 82:2769–2780

    Article  Google Scholar 

  • Lodge DJ, McDowell WH, McSwiney CP (1994) The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9(10):384–387

    Article  CAS  PubMed  Google Scholar 

  • MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci U S A 108(7):3086–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G et al (2008) The global distribution of atmospheric phosphorus deposition and anthropogenic impacts. Global Biogeochem Cycles 22:GB4026. https://doi.org/10.1029/2008GB003240

    Article  CAS  Google Scholar 

  • Manzoni S, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41(7):1355–1379

    Article  CAS  Google Scholar 

  • Manzoni S, Porporato A, D’Odorico P, Laio F, Rodriguez-Iturbe I (2004) Soil nutrient cycles as a nonlinear dynamical system. Nonlinear Process Geophys 11(5/6):589–598

    Article  Google Scholar 

  • Manzoni S, Schaeffer SM, Katul G, Porporato A, Schimel JP (2014) A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol Biochem 73:69–83

    Article  CAS  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286

    Article  CAS  Google Scholar 

  • McGroddy ME, Silver WL, de Oliveira RC (2004) The effect of phosphorus availability on decomposition dynamics in a seasonal lowland Amazonian forest. Ecosystems 7(2):172–179

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Buenemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in phosphorus cycling, Soil Biology, 26. Springer, Heidelberg, pp 215–241

    Chapter  Google Scholar 

  • Neff JC, Reynolds RL, Belnap J, Lamothe P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15(1):87–95

    Article  Google Scholar 

  • Newman GS, Hart SC (2015) Shifting soil resource limitations and ecosystem retrogression across a three million year semi-arid substrate age gradient. Biogeochemistry 124(1–3):177–186

    Article  Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in the soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABIL, Wallingford, pp 133–164

    Chapter  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycles 18(2)

    Article  CAS  Google Scholar 

  • Parton WJ, Stewart JW, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5(1):109–131

    Article  CAS  Google Scholar 

  • Parton WJ, Hartman M, Ojima D, Schimel D (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19(1):35–48

    Article  Google Scholar 

  • Porporato A, D’Odorico P, Laio F, Rodriguez-Iturbe I (2003) Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Adv Water Resour 26(1):45–58

    Article  CAS  Google Scholar 

  • Reed SC, Townsend AR, Taylor PG, Cleveland CC (2011) Phosphorus cycling in tropical forests growing on highly weathered soils. In: Buenemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in phosphorus cycling, Soil Biology, 26. Springer, Heidelberg, pp 339–369

    Chapter  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101(30):11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resende JCF, Markewitz D, Klink CA, Bustamante MM, Davidson EA (2010) Phosphorus cycling in a small watershed in the Brazilian Cerrado: impacts of frequent burning. Biogeochemistry. https://doi.org/10.1007/s10533–010–9531-5

  • Reserva Ecologia do IBGE (2011). http://www.recor.org.br/Estacao/estacao.html. Accessed 28 Jul 11

  • Rodriguez-Iturbe I, Porporato A, Ridolfi L, Isham V, Coxi DR (1999) Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences (vol 455, No 1990, pp 3789–3805). The Royal Society

    Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. In: Tiessen H (ed) Phosphorus in the global environment: transfers, cycles and management. Wiley, New York, pp 27–42

    Google Scholar 

  • Runyan CW, D’Odorico P (2012) Hydrologic controls on phosphorus dynamics: a modeling framework. Adv Water Resour 35:94–109

    Article  CAS  Google Scholar 

  • Runyan CW, D’Odorico P (2013) Positive feedbacks and bistability associated with phosphorus-vegetation-microbial interactions. Adv Water Resour 52:151–164

    Article  CAS  Google Scholar 

  • Runyan C, D’Odorico P (2016) Global deforestation. Cambridge University Press, New York, NY

    Book  Google Scholar 

  • Sample EC, Soper RJ, Racz GJ (1980) Reaction of phosphate fertilizers in soils. In: Khasawneh FE, Sample AC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, WI, pp 263–310

    Google Scholar 

  • Schlesinger W (1997) Biogeochemistry: an analysis of global change. Academic, San Diego

    Google Scholar 

  • Scholes RJ, Hall DO (1996) The carbon budget of tropical savannas, woodlands and grasslands. SCOPE-Scientific Committee on Problems of the Environment International Council of Scientific Unions 56:69–100

    Google Scholar 

  • Scholz FG, Bucci SJ, Hoffmann WA, Meinzer FC, Goldstein G (2010) Hydraulic lift in a Neotropical savanna: experimental manipulation and model simulations. Agric For Meteorol 150(4):629–639

    Article  Google Scholar 

  • Selmants PC, Hart SC (2010) Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems? Ecology 91(2):474–484

    Article  PubMed  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-State aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–1625

    Article  Google Scholar 

  • Smith OL (1979) An analytical model of the decomposition of soil organic matter. Soil Biol Biochem 11(6):585–606

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (am) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Sparrow AD, Friedel MH, Tongway DJ (2003) Degradation and recovery processes in arid grazing lands of central Australia Part 3: implications at landscape scale. J Arid Environ 55(2):349–360

    Article  Google Scholar 

  • Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61(1):218–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BL, Haygarth PM (2001) Biogeochemistry: phosphorus solubilization in rewetted soils. Nature 411(6835):258–258

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  PubMed  Google Scholar 

  • Vandecar KL, Lawrence D, Wood T, Oberbauer SF, Das R, Tully K, Schwendenmann L (2009) Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest. Ecology 90(9):2547–2555

    Article  PubMed  Google Scholar 

  • Vitousek PM, Turner DR, Parton WJ, Sanford RL (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology 75(2):418–429

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications and nitrogen-phosphorus interactions. Ecol Appl 20(1):5–15

    Article  PubMed  Google Scholar 

  • Von Uexkull HR, Mutert E (1998) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Kluwer, Dordrecht, pp 5–19

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wang YP, Houlton BZ, Field CB (2007) A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Glob Biogeochem Cycles 21(1)

    Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513

    Article  CAS  PubMed  Google Scholar 

  • Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22(6):737–749

    Article  Google Scholar 

  • Yang X, Thornton PE, Ricciuto DM, Post WM (2014) The role of phosphorus dynamics in tropical forests. Biogeosciences 11(6):1667

    Article  CAS  Google Scholar 

  • Yuan ZY, Chen HY (2009) Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob Ecol Biogeogr 18(1):11–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runyan, C.W., D’Odorico, P. (2019). Modeling of Phosphorus Dynamics in Dryland Ecosystems. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_12

Download citation

Publish with us

Policies and ethics