Skip to main content

Hydrological and Geomorphological Significance of Riparian Vegetation in Drylands

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

Drylands are regions encompassing hyperarid, arid, semiarid, or subhumid climatic conditions (see also Chap. 1). They include cold and warm subtropical deserts, savannas, and the Mediterranean environments. Our focus here is on warm drylands, which are generally characterized by the existence of a well-defined dry season dominated by subtropical high pressure (Malanson 1993) and a rainy season with an average precipitation of less than 700 mm/year. Such regions cover approximately 50% of the continents, with about 20% of the world’s population living in these areas (Le Houerou 1982; Nanson et al. 2002). This explains the growing scientific interest in the study of drylands. Here, we focus on the interactions between fluvial geomorphology and riparian vegetation. These interactions act at different spatial and temporal scales, suggesting the existence of an intrinsic and remarkable sensitivity of riparian ecosystems to hydrological and geomorphological modifications. In this respect, geomorphological resilience to disturbances of either climatic or anthropic origin has recently been questioned (Tooth 2018). Dryland riparian ecosystems are (spatially) linear oases playing the role of humid spots in dryland regions (see Tooth and McCarthy (2007) for a review) used by people and wildlife (Fig. 10.1). However, such ecosystems have been affected by heavy anthropogenic disturbances and risks associated with the encroachment of invasive riparian species, with great reductions in spatial extent (up to 80%, as in certain USA sites) with respect to presettlement times (Smith et al. 1991; Tooth 2000a, b; Salinas et al. 2000; O’Connor 2001; Pettit et al. 2001; Williams et al. 2013). This also sets the risk of reducing common property resources in drylands, e.g., water bodies and related ecological functions being benefited by a community or a group of communities (Gaur et al. 2018) and ecosystem species (McGinnes et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen DC, Stricker CA, Nelson SM (2016) Wood decay in desert riverine environments. For Ecol Manag 365:83–95

    Article  Google Scholar 

  • Ashworth PJ (1996) Mid-Channel bar growth and its relationship to local flow strength and direction. Earth Surf Process Landf 21:103–123

    Article  Google Scholar 

  • Beck S (1984) Mathematical modeling of meander interaction. In: Elliot CM (ed) River meandering, proceedings of the conference, rivers’83. ASCE, New York, pp 932–941

    Google Scholar 

  • Beck S, Melfi DA, Yalamanchili K (1984) Lateral migration of the Genesee River, New York. In: Elliott CM (ed) Conference Rivers’ 83, New Orleans, Lousiana, October 24–26, 1983. ASCE, New York

    Google Scholar 

  • Berlow EL, Brose U, Martinez ND (2008) The “Goldilocks factor” in food webs. Proc Natl Acad Sci U S A 105(11):4079–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertagni MB, Perona P, Camporeale C (2018) Parametric transitions between bare and vegetated states in water driven patterns. Proc Natl Acad Sci U S A 115(32):8125–8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondeaux P, Seminara G (1985) A unified bar-bend theory of river meanders. J Fluid Mech 157:449–470

    Article  Google Scholar 

  • Brookes CJ, Hooke JM, Mant J (2000) Modelling vegetation interactions with channel flow in river valley of the Mediterranean region. Catena 40:93–118

    Article  Google Scholar 

  • Bull WB (1997) Discontinuous ephemeral streams. Geomorphology 19:227–276

    Article  Google Scholar 

  • Bunn SE, Thoms MC, Hamilton SK, Capon SJ (2006) Flow variability in dryland rivers: boom, bust and the bits in between. River Res Appl 22:179–186

    Article  Google Scholar 

  • Busch DE, Smith SD (1995) Mechanism associated with decline of woody species in riparian ecosystem of the southwestern U.S. Ecol Monogr 65:347–370

    Article  Google Scholar 

  • Camporeale C (2005) On the short- and long-term behavior of meandering rivers. PhD Thesis, Politecnico di Torino

    Google Scholar 

  • Camporeale C, Ridolfi L (2006) Riparian vegetation distribution induced by river flow variability: a stochastic approach. Water Resour Res 42:W10415

    Article  Google Scholar 

  • Camporeale C, Ridolfi L (2007) Noise-induced phenomena in riparian vegetation dynamics. Gephys Res Lett 34:L18406

    Article  Google Scholar 

  • Camporeale C, Ridolfi L (2010) Interplay among river meandering, discharge stochasticity and riparian vegetation. J Hydrol 382:138–144

    Article  Google Scholar 

  • Camporeale C, Perona P, Porporato A, Ridolfi L (2005) On the long-term behavior of meandering rivers. Water Resour Res 41(12). https://doi.org/10.1029/2005WR004109. Article Number: W12403

  • Camporeale C, Perona P, Porporato A, Ridolfi L (2007) Hierarchy of models for meandering rivers and related morphodynamic processes. Rev Geophys 45:1–28

    Article  Google Scholar 

  • Camporeale C, Perucca E, Ridolfi L (2008) Significance of cutoff in meandering river dynamics. J Geophys Res 113:F01001

    Google Scholar 

  • Camporeale C, Perucca E, Ridolfi L, Gurnell A (2013) Modelling the interaction between river morphodynamics and riparian vegetation. Rev Geophys 51:1–36

    Article  Google Scholar 

  • Capon SJ (2005) Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. J Arid Environ 60:283–302

    Article  Google Scholar 

  • Carter Johnson W, Dixon MD, Simons R, Jenson S, Larson K (1995) Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho. Geomorphology 13:159–173

    Article  Google Scholar 

  • Chebaane M, Salas J, Boes DC (1995) Product periodic autoregressive processes for modeling intermittent monthly streamflows. Water Resour Res 31(6):1513–1518

    Article  Google Scholar 

  • Clark PB, Davies SMA (1998) The application of regime theory to wadi channels in desert conditions. In: White WR (ed) International conference on river regime. Wiley

    Google Scholar 

  • Constantine CR, Dunne T, Hanson GJ (2009) Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology 106(3–4):242–252

    Article  Google Scholar 

  • Costa AC, Bronstert A, de Araujo JC (2012) A channel transmission losses model for different dryland rivers. Hydrol Earth Syst Sci 16:1111–1135

    Article  Google Scholar 

  • Costa AC, Foerster S, de Araujo JC, Bronstert A (2013) Analysis of channel transmission losses in a dryland river reach in north-eastern Brazil using streamflow series, groundwater level series and multi-temporal satellite data. Hydrol Process 27:1046–1060

    Article  Google Scholar 

  • Crouzy B, Perona P (2012) Biomass selection by floods and related timescales. Part 2. Stochastic modelling. Adv Water Resour 39:97–105

    Article  Google Scholar 

  • Crouzy B, Edmaier K, Pasquale N, Perona P (2013) Impact of floods on the statistical distribution of riverbed vegetation. Geomorphology 202:51–58

    Article  Google Scholar 

  • Crouzy B, Baerenbold F, D’Odorico P, Perona P (2016) Ecomorphodynamic approaches to river anabranching patterns. Adv Water Resour 93:156–165

    Article  Google Scholar 

  • Cummins KW (1993) Riparian stream linkages: in-stream issues. In: Bunn SE, Pusey BJ, Price P (eds) Ecology and management of riparian zones in Australia, LWRRDC Occasional Paper Series No: 05/93

    Google Scholar 

  • Darby SE (1999) Effect of riparian vegetation on flow resistance and flood potential. J Hydraul Eng 125(5):443–454

    Article  Google Scholar 

  • Demissie B, Frankl A, Haile M, Nyssen J (2015) Biophysical controlling factors in upper catchments and braided rivers in drylands: the case of a marginal graben of the Ethiopian rift valley. Land Degrad Dev 26:748–758

    Article  Google Scholar 

  • Douglas CMS, Mulligan M, Harrison XA, Henschel JR, Pettorelli N, Cowlishaw G (2016) Widespread dieback of riparian trees on a dammed ephemeral river and evidence of local mitigation by tributary flows. PeerJ 4:e2622. https://doi.org/10.7717/peerj.2622

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunkerley DL, Brown KJ (2002) Oblique vegetation banding in the Australian arid zone: implication for theories of pattern evolution and maintenance. J Arid Environ 51:163–181

    Article  Google Scholar 

  • Edwards BF, Smith DH (2002) River meandering dynamics. Phys Rev E 65:1–12

    Article  CAS  Google Scholar 

  • Ellis LM, Molles MC, Crawford CS (1999) Influence of experimental flooding on litter dynamics in a Rio Grande riparian forest, New Mexico. Restor Ecol 7:193–204

    Article  Google Scholar 

  • Farquharson FAK, Meigh JR, Sutcliffe JV (1992) Regional flood frequency analysis in arid and semi-arid areas. J Hydrol 138:487–501

    Article  Google Scholar 

  • Fielding CR, Alexander J, Newman-Sutherland E (1997) Preservation of in situ, arborescent vegetation and fluvial bar construction in the Burdekin River of north Queensland, Australia. Palaeogeogr Palaeoclimatol Palaeoecol 135(1997):123–144

    Article  Google Scholar 

  • Flügel WA (1995) River salination due to dryland agriculture in the Western Cape Province, Republic of South Africa. Environ Int 21(5):679–686

    Article  Google Scholar 

  • Foerster S, Wilczok C, Brosinski A, Segl K (2014) Assessment of sediment connectivity from vegetation cover and topography using remotely sensed data in a dryland catchment in the Spanish Pyrenees. J Soils Sediments 14:1982–2000

    Article  CAS  Google Scholar 

  • Forbes RH (1902) The river-irrigating waters of Arizona-their character and effects. Univ Ariz Agric Exp Station Bull 44:143–214

    Google Scholar 

  • Friedman JM, Lee VJ (2002) Extreme floods, channel change, and riparian forests along ephemeral streams. Ecol Monogr 72(3):409–425

    Article  Google Scholar 

  • Gaur MK, Goyal RK, Kalappurakkal S, Pandey CB (2018) Common property resources in drylands of India. Int J Sust Dev World 25(6):491–499

    Article  Google Scholar 

  • Graeme D, Dunkerley DL (1993) Hydraulic resistance by the river red gum, Eucalyptus camaldulensis, in ephemeral desert streams. Aust Geogr Stud 31:141–154

    Article  Google Scholar 

  • Graf WL (1980) Riparian management: a flood control perspective. J Soil Water Conserv 7:158–161

    Google Scholar 

  • Graf WL (1981) Channel instability in a braided, sand bed river. Water Resour Res 17(4):1087–1094

    Article  Google Scholar 

  • Graf WL (2002) Fluvial processes in dryland rivers. Blackburn Press, Caldwell

    Google Scholar 

  • Griffin GF, Stafford Smith DM, Morton SR, Allan GE, Masters KA (1989) Status and implications of the invasion of Tamarisk (Tamarix aphylla) on the Finke River, Northern Territory, Australia. J Environ Manag 29:297–315

    Google Scholar 

  • Grime JP (1979) Primary strategy in plants. Trans Bot Soc Edinburg 43:151–160

    Article  Google Scholar 

  • Gurnell A (2014) Plants as river system engineers. Earth Surf Process Landf 39:4–25

    Article  Google Scholar 

  • Hall JE, Pollock MM, Hoh S, Volk C, Goldsmith J, Jordan CE (2015) Evaluation of dryland riparian restoration with cottonwood and willow using deep-planting and herbivore protection. Ecosphere 6(12):1–12

    Article  Google Scholar 

  • Halse SA, Jensen A (1993) Riparian zone management in WA and SA: policy and practice. In: Bunn SE, Pusey, Price P (eds) Ecology and management of riparian zones in Australia. LWRRDC Occasional Paper Series No: 05/93

    Google Scholar 

  • Hancock CN, Ladd PG, Froend RH (1996) Biodiversity and management of riparian vegetation in Western Australia. For Ecol Manag 85:239–250

    Article  Google Scholar 

  • Hey RD, Thorne CR (1986) Stable Channels with mobile gravel beds. J Hydraul Eng 112(8):671–689

    Article  Google Scholar 

  • Higgins SI, Rogers KH, Kemper J (1997) A description of the functional vegetation pattern of a semi-arid floodplain. South Africa Plant Ecol 129:95–101

    Article  Google Scholar 

  • Hooke J, Mant J (2002) Morpho-dynamics of ephemeral streams. In: Bull LJ, Kirby MJ (eds) Dryland river: hydrology and geomorphology of semi-arid channels. Wiley

    Google Scholar 

  • Howard AD, Knudson TR (1984) Sufficient conditions for river meandering: a simulation approach. Water Resour Res 20(11):1659–1667

    Article  Google Scholar 

  • Huang HQ, Nanson GC (1997) Vegetation and channel variation; a case study of four small streams in southeastern Australia. Geomorphology 18:237–249

    Article  Google Scholar 

  • Hughes MR (1990) The influence of flooding regimes on forest distribution and composition in the Tana river floodplain, Kenya. J Appl Ecol 27:475–491

    Article  Google Scholar 

  • Hupp CR, Osterkamp WR (1985) Bottomland vegetation distribution along Passage Creek, Virginia, in relation to fluvial landforms. Ecology 66(3):670–681

    Article  Google Scholar 

  • Ikeda S, Parker G, Sawai K (1981) Bend theory of river meanders. Part 1. Linear development. J Fluid Mech 112:363–377

    Article  Google Scholar 

  • Jacobson PJ, Jacobson KM, Angermeier PL, Cherry DS (2000) Hydrological influences on soil properties along ephemeral rivers in the Namib Desert. J Arid Environ 45:21–34

    Article  Google Scholar 

  • Jarihani AA, Larsen JR, Callow JN, McVicar TR, Johansen K (2015) Where does all the water go? Partitioning water transmission losses in a data-sparse, multi-channel and low-gradient dryland river system using modelling and remote sensing. J Hydrol 529:1511–1529

    Article  Google Scholar 

  • Johannesson H, Parker G (1989) Linear theory of river meanders. In: Ikeda S, Parker G (eds) Water Resour Monogr 12:181–213

    Google Scholar 

  • Jolly ID (1996) The effects of river management on the hydrology and hydroecology of arid and semi-arid floodplains. In: Anderson M, Walling E, Bates P (eds) Floodplain processes. Wiley

    Google Scholar 

  • Jolly ID, Walker GR, Thorburn PG (1993) Salt accumulation in semi-arid floodplain soils with implications for forest health. J Hydrol 150:589–614

    Article  CAS  Google Scholar 

  • Katz G, Denslow MW, Stromberg JC (2012) The Goldilocks effect: intermitted streams sustain more plant species than those with perennial or ephemeral flow. Freshw Biol 57:467–480

    Article  Google Scholar 

  • Kauffman JB, Krueger WC, Vavra M (1983) Effects of late season cattle grazing on riparian plant communities. J Range Manag 36(6):685–691

    Article  Google Scholar 

  • Kitahara K, Horsthemke W, Lefever Y, Inaba R (1980) Phase diagrams of noise induced transitions. Prog Theor Phys 64:1233–1247

    Article  Google Scholar 

  • Knighton AD, Nanson GC (1994) Flow transmission along an arid zone anastomosing river, Cooper Creek, Australia. Hydrol Process 8:137–154

    Article  Google Scholar 

  • Knighton AD, Nanson GC (1997) Distinctiveness, diversity and uniqueness in arid zone river systems. In: Thomas DSG (ed) Arid Zone Geomorphology: Process, Form and Change in Drylands. Wiley, Chichester, pp 185–203

    Google Scholar 

  • Knighton AD, Nanson GC (2000) Waterhole form and process in the anastomosing channel system of Cooper Creek, Australia. Geomorphology 35:101–117

    Article  Google Scholar 

  • Kouwen N, Li RM (1980) Biomechanics of vegetative channel linings. J Hydraul Div 106(6):713–728

    Google Scholar 

  • Lancaster ST, Bras RL (2002) A simple model of river meandering and its comparison to natural channels. Hydrol Process 16:1–26

    Article  Google Scholar 

  • Langbein WB, Shumm SA (1958) Yield of sediment in relation to mean annual precipitation. Trans Am Geophys Union 39:1076–1084

    Article  Google Scholar 

  • Laronne JB, Reid I (1993) Very high rates of bedload sediment transport by ephemeral desert river. Nature 366:148–150

    Article  Google Scholar 

  • Le Houerou HN (1982) The arid bioclimates in the mediterranean isoclimatic zone. Ecol Med TVIII Fasc 1/2:103–114

    Google Scholar 

  • Lekach J, Amit R, Grodek T, Schick A (1998) Fluvio-pedogenic processes in an ephemeral stream channel, Nahal Yael, Southern Negev, Israel. Geomorphology 23:353–369

    Article  Google Scholar 

  • Leopold L, Wolman MG (1960) River meanders. Geol Soc Am Bull 71:769–794

    Article  Google Scholar 

  • Lewin J (1989) Floods in fluvial geomorphology. In: Beven K, Carling P (eds) Floods: hydrological, sedimentological and geomorphological implications. Wiley, Chichester

    Google Scholar 

  • Liverpool TB, Edward SF (1995) Dynamics of meandering river. Phys Rev Lett 75:3016–3020

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bermudez F, Conesa-Garcia C, Alonso-Sarria F (2002) Floods: magnitude and frequency in ephemeral streams of the Spanish Mediterranean Region. In: Bull LJ, Kirkby MJ (eds) Dryland rivers: hydrology and geomorphology of semi-arid channels. Wiley

    Google Scholar 

  • Malanson GP (1993) Riparian landscapes, Cambridge Studies in Ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Masterman R, Thorne CR (1992) Predicting influence of bank vegetation on channel capacity. J Hydraul Eng 118(7):1052–1058

    Article  Google Scholar 

  • McGinnes HM, Arthur AD, Reid JRW (2010) Woodland bird declines in the Murray-Darling Basin: are there links with floodplain change? Rangel J 32(3):315–327

    Article  Google Scholar 

  • McKenney R, Jacobson RB, Wertheimer RC (1995) Woody vegetation and channel morphogenesis in low-gradient, gravel-bed streams in the Ozark Plateaus, Missouri and Arkansas. Geomorphology 13:175–198

    Article  Google Scholar 

  • McMahon TA (1979) Hydrological characteristics of arid zones. In: Proceedings of the Canberra symposium – the hydrology of areas of low precipitation. IAHS-IASH Publication No. 128, pp 105–123

    Google Scholar 

  • Millar RG (2000) Influence of bank vegetation on alluvial channel patterns. Water Resour Res 36(4):1109–1118

    Article  Google Scholar 

  • Morin E, Grodek T, Dahan O, Benito G, Kulls C, Jacobi Y, van Langenhove G, Seely M, Emzel Y (2009) Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb river, Namibia. J Hydrol 368:262–275

    Article  Google Scholar 

  • Mosbrugger V (1990) The tree habit and land plants. Lecture notes in earth sciences. Springer, Berlin, p 28

    Google Scholar 

  • Muneepeerakul R, Rinaldo A, Rodriguez-Iturbe I (2007) Effects of river flow scaling properties on riparian width and vegetation biomass. Water Resour Res 43:W12406

    Google Scholar 

  • Naiman RJ, Decamps H, McClain ME (2005) Riparia. Elsevier, New York

    Google Scholar 

  • Nanson GC, Tooth S, Knighton D (2002) A global perspective on dryland rivers: perceptions, misconceptions and distinctions. In: Bull LJ, Kirby MJ (eds) Dryland river: hydrology and geomorphology of semi-arid channels. Wiley

    Google Scholar 

  • Nash DJ (2001) Arid geomorphology. Prog Phys Geogr 25(3):409–427

    Article  Google Scholar 

  • North CP, Nanson GC, Fagan SD (2007) Recognition of the sedimentary architecture of dryland anabranching (anastomosing) rivers. J Sediment Res 77:925–938

    Article  Google Scholar 

  • O’Connor TG (2001) Effect of small catchment dams on downstream vegetation of a seasonal river in semi-arid African savanna. J Appl Ecol 38:1314–1325

    Article  Google Scholar 

  • Palmquist E, Ralston BE, Merritt DM, Shfroth PB (2018) Landscape-scale processes influence riparian plant composition along a regulated river. J Arid Environ 148:54–64

    Article  Google Scholar 

  • Park CC (1977) World-wide variations in hydraulic geometry exponents of stream channels: an analysis and some observations. J Hydrol 33:133–146

    Article  Google Scholar 

  • Parker G, Shimizu Y, Wilkerson GV, Eke EC, Abad JD, Lauer JW, Paola C, Dietrich WE, Voller VR (2011) A new framework for modeling the migration of meandering rivers. Earth Surf Process Landf 36(1):70–86

    Article  Google Scholar 

  • Perona P, Crouzy B (2018) Resilience of riverbed vegetation to uprooting by flow. Proc Roy Soc Lond A 474:20170547

    Article  Google Scholar 

  • Perona P, Porporato A, Ridolfi L (2002) River dynamics after cutoff: a discussion of different approaches. In: Bousmar D, Zech Y (eds) Proceedings of the river flow 2002 IAHR international conference on fluvial hydraulics, vol 2, pp 715–721

    Google Scholar 

  • Perona P, Camporeale C, Perucca E, Savina M, Molnar P, Burlando P, Ridolfi L (2009) Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquat Sci 71(3):266–278. https://doi.org/10.1007/s00027-009-9215-1

    Article  Google Scholar 

  • Perona P, Molnar P, Crouzy B, Perucca E, Jiang Z, McLelland S, Wuthrich D, Edmaier K, Francis R, Camporeale C, Gurnell A (2012) Biomass selection by floods and related timescales. Part 1. Experimental observations. Adv Water Resour 39:85–96

    Article  Google Scholar 

  • Perucca E, Camporeale C, Ridolfi L (2005) Nonlinear analysis of the geometry of meandering rivers. Geophys Res Lett 32:L03402

    Article  Google Scholar 

  • Perucca E, Camporeale C, Ridolfi L (2007) Significance of the riparian vegetation dynamics on meandering river morphodynamics. Water Resour Res 43:W03430

    Article  Google Scholar 

  • Pettit NE, Froend RH, Davies PM (2001) Identifying the natural flow regime and the relationship with riparian vegetation for two contrasting Australian rivers. Regul Rivers Res Manag 17:201–215

    Article  Google Scholar 

  • Pizzuto JE, Meckelnburg TS (1989) Evaluation of a linear bank erosion equation. Water Resour Res 25:1005–1013

    Article  Google Scholar 

  • Puckridge JT, Walker KF, Costello JF (2000) Hydrological persistence and the ecology of dryland rivers. Regul Rivers Res Manag 16:285–402

    Article  Google Scholar 

  • Reid I, Laronne JB (1995) Bedload sediment transport in ephemeral stream and comparison with seasonal and perennial counterparts. Water Resour Res 31:773–781

    Article  Google Scholar 

  • Reid I, Laronne JB, Powell DM (1998) Flash Flood and bedload dynamics of desert gravel-bed steams. Hydrol Process 12:543–557

    Article  Google Scholar 

  • Ridolfi L, D’Odorico P, Laio F (2006) Effects of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resour Res 42:01201

    Article  Google Scholar 

  • Ridolfi L, D’Odorico P, Laio F (2011) Noise-induced phenomena in the environmental sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Robinson TW (1958) Phreatophytes US Geological Survey Water-Supply 1423:521–560

    Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal river basins: chance and self-organization, vol 547. Cambridge University Press, New York

    Google Scholar 

  • Rozin U, Shick AP (1996) Land use, change, conservation measures and stream channel response in the Mediterranean/semi-arid transition zone: Nahal Hoga, Southern Coastal Plain, Israel. In: Proceedings exeter symposium, erosion and sediment yield: global and regional perspectives, IAHS Publication No. 234, pp 427–444

    Google Scholar 

  • Salinas MJ, Blanca G, Romero AT (2000) Evaluating riparian vegetation in semi-arid Mediterranean watercourses in south-eastern Iberina Penisola. Environ Conserv 27:24–35

    Article  Google Scholar 

  • Scott RL, Shuttleworth WJ, Goodrich DC, Maddock T III (2000) The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agric For Meteorol 105:241–256

    Article  Google Scholar 

  • Shaw JR, Cooper DJ, Sutfin NA (2018) Applying a hydrogeomorphic channel classification to understand spatial patterns in riparian vegetation. J Veg Sci 29:550–559

    Article  Google Scholar 

  • Smith SD, Wellington AB, Nachlinger JL, Fox A (1991) Functional response of riparian vegetation to streamflow diversion in the eastern Sierra Nevada. Ecol Appl 1(1):89–97

    Article  PubMed  Google Scholar 

  • Smith MA, Dodd JL, Skinner QD, Rodgers JD (1993) Dynamics of vegetation along and adjacent to an ephemeral channel. J Range Manag 46(1):56–64

    Article  Google Scholar 

  • Stavi I, Shem-Tov R, Shlomi Y, Bel G, Yizhaq H (2015) Recruitment and decay rate of Acacia seedlings in the hyper-arid Arava Vally, Israel. Catena 131:14–21

    Article  Google Scholar 

  • Stølum HH (1996) River meandering as a self-organization process. Science 271:1710–1713

    Article  Google Scholar 

  • Storz-Perez Y, Laronne JB (2018) The morpho-textural signature of large bedforms in ephemeral gravel-bed channels of various planforms. Hydrol Process 32:617–635

    Article  Google Scholar 

  • Stromberg JC (1993) Instream flow models for mixed deciduous riparian vegetation within a semiarid region. Regul Rivers Res Manag 8:225–235

    Article  Google Scholar 

  • Stromberg JC (2001) Restoration of riparian vegetation in the south-western United States: importance of flow regimes and fluvial dynamism. J Arid Environ 49:17–34

    Article  Google Scholar 

  • Stromberg JC, Tiller R, Ricther B (1996) Effects of Groundwater decline on riparian vegetation of semiarid regions: the San Pedro, Arizona. Ecol Appl 6(1):113–131

    Article  Google Scholar 

  • Sun T, Meakin P, Jøssang T (1996) A simulation model for meandering rivers. Water Resour Res 32(9):2937–2954

    Article  Google Scholar 

  • Tealdi S, Camporeale C, Ridolfi L (2011) Modeling the impact of river damming on riparian vegetation. J Hydrol 396:302–312

    Article  Google Scholar 

  • Thornes JB (1994) Channel processes, evolution and history. In: Abrahams AD, Parson AJ (eds) Geomorphology of desert environments. Chapman & Hall, London, pp 288–317

    Chapter  Google Scholar 

  • Tooth S (2000a) Process, form and change in dryland rivers: a review of recent research. Earth Sci Rev 51:67–107

    Article  Google Scholar 

  • Tooth S (2000b) Downstream changes in dryland river channels: the Northern Plains of arid central Australia. Geomorphology 34:33–54

    Article  Google Scholar 

  • Tooth S (2018) The geomorphology of wetlands in drylands: resilience, nonresilience, or…? Geomorphology 305:33–48

    Article  Google Scholar 

  • Tooth S, McCarthy TS (2007) Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Prog Phys Geogr 31(1):3–41

    Article  Google Scholar 

  • Tooth S, Nanson GC (2000) The role of vegetation in the formation of anabranching channels in an ephemeral river, Northern plains, arid central Australia. Hydrol Process 14:3099–3117

    Article  Google Scholar 

  • Trodd NM, Dougill AJ (1998) Monitoring vegetation dynamics in semi-arid Africa rangelands: use and limitation of Earth observation data to characterize vegetation structure. Appl Geogr 18(4):315–330

    Article  Google Scholar 

  • Tron S, Laio F, Ridolfi L (2014) Effect of water table fluctuations on phreatophytic root distribution. J Theor Biol 360:102–108. https://doi.org/10.1016/j.jtbi.2014.06.035

    Article  PubMed  Google Scholar 

  • Tron S, Perona P, Gorla L, Schwarz M, Laio F, Ridolfi L (2015) The signature of randomness in riparian plant root distributions. Geophys Res Lett 42:7098–7106

    Article  Google Scholar 

  • Tucker Schulz T, Leininger WC (1990) Differences on riparian vegetation structure between grazed areas and exclosures. J Range Manag 43(4):295–299

    Article  Google Scholar 

  • Vandersande MW, Glenn EP, Walworth JL (2001) Tolerance of five riparian plants from the lower Colorado River to salinity drought and inundation. J Arid Environ 49:147–159

    Article  Google Scholar 

  • Vesipa R, Camporeale C, Ridolfi L (2016) Recovery times of riparian vegetation. Water Resour Res 52

    Article  Google Scholar 

  • Vesipa R, Camporeale C, Ridolfi L (2017) Effect of river flow fluctuations on riparian vegetation dynamics: Processes and models. Adv Water Resour 110:29–50

    Article  CAS  Google Scholar 

  • Wainwright J, Parson AJ, Schlesinger WH, Abrahams AD (2002) Hydrology-vegetation interactions in areas of discontinuous flow on a semi-arid bajada, Southern New Mexico. J Arid Environ 51:319–338

    Article  Google Scholar 

  • Wende R, Nanson GC (1998) Anabranching rivers: ridge-form alluvial channels in tropical northern Australia. Geomorphology 22:205–224

    Article  Google Scholar 

  • Wilcox BP, Huang Y (2010) Woody plant encroachment paradox: rivers rebound as degraded grasslands covert to woodlands. Geophys Res Lett 37:L07402

    Google Scholar 

  • Williams D, Pettorelli N, Henschel J, Cowlishaw G, Douglas CMS (2013) Impact of alien trees on mammal distribution along an ephemeral river in the Namib desert. Afr J Ecol 52:404–413

    Article  Google Scholar 

  • Wohl E (2016) Spatial heterogeneity as a component of river geomorphic complexity. Prog Phys Geogr 40(4):598–615

    Article  Google Scholar 

  • Wohl E, Lane SN, Wilcox AC (2015) The science and practice of river restoration. Water Resour Res 51:5974–5997

    Article  Google Scholar 

  • Wolman MG, Gerson R (1978) Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf Process Landf 3:189–208

    Article  Google Scholar 

  • Yao Y, Tian Y, Andrews C, Li X, Zheng Y, Zheng C (2018) Role of groundwater in the dryland ecohydrological system: a case study of the Heihe River basin. J Geophys Res-Atmos 123:6760–6776

    Article  Google Scholar 

  • Zalewski M (2000) Ecohydrology – the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecol Eng 16:1–8

    Article  Google Scholar 

  • Zalewski M, Bis B, Lapinska M, Frankiewicz P, Puchalski W (1998) The importance of the riparian ecotone and river hydraulics for sustainable basin-scale restoration scenarios. Aquat Conserv Mar Freshwat Ecosyst 8:287–307

    Article  Google Scholar 

  • Zhang XN, Yang X, Li Y, He X, Lv G, Yang J (2017) Influence of edaphic factors on plant distribution and diversity in the arid area of Xinjiang Northwest China. Arid Land Res Manag 32(1):38–56

    Article  Google Scholar 

  • Zhou J, Fu B, Gao G, Lü Y, Wang S (2017) An integrated probabilistic assessment to analyse the stochasticity of soil erosion in different restoration vegetation types. Hydrol Earth Syst Sci 21:1491–1514

    Article  Google Scholar 

  • Zolezzi G, Seminara G (2001) Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. J Fluid Mech 438:183–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Camporeale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camporeale, C., Perona, P., Ridolfi, L. (2019). Hydrological and Geomorphological Significance of Riparian Vegetation in Drylands. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_10

Download citation

Publish with us

Policies and ethics