Skip to main content

Sugarcane (Saccharum spp.): Breeding and Genomics

  • Chapter
  • First Online:

Abstract

Sugarcane (Saccharum spp.) is cultivated and credited worldwide for its ability to synthesize and store exceptionally high concentration of sucrose. Since prehistoric times sugarcane cultivation has undergone many transformations into present-day noble cane. Initially, selection of desirable clones and interspecific hybrids brought many agronomically-useful traits into the cultivated species. Wild related species played a major role as the donor for most of the desirable traits through gene introgression. Pre-breeding strategies and intergeneric hybridization have played a crucial role in development of noble high-yielding canes. Cultivated sugarcane has been further enriched with other valuable traits such as high fiber, high fermentable sugar and biotic and abiotic stress tolerance. Despite its genomic complexity, crossability barriers within the genus, long breeding and selection cycles, etc., remarkable progress has been achieved to develop a wide range of cultivars, hybrids and mutants suitable for different agroclimatic conditions. Germplasm collections, preservation and their utilization for development of an ideotype bearing desirable traits has become a research priority. For this purpose, molecular-marker tools are acting as potential drivers during pre-breeding and selection of desirable progenies. Supplementary tools such as in vitro culture, isolation of somaclones, induced mutagenesis and transgenics have played an essential role in the generation of novel genetic variability. In recent decades much emphasis has been given to enrich sugarcane breeding strategies; however, future avenues need to be focused on the utilization of inexhaustible and wealthy sugarcane genomic resources and advancements made through biotechnological interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander AG (1985) The energy cane alternative. Elsevier, Amsterdam, pp 437–477

    Google Scholar 

  • Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BW (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134(4):1249–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allsopp PG, Manners JM (1997) Novel approaches for managing pests and diseases in sugarcane. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenge beyond 2000. CAB International, Wallingford, pp 173–188

    Google Scholar 

  • Amalraj AV, Balasundaram N (2006a) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41

    Article  Google Scholar 

  • Amalraj AV, Balasundaram N (2006b) Status of sugar-cane genetic resources in India. PGR Newsl 148:26–31

    Google Scholar 

  • Amalraj VA, Rakkiyappan R, Neelmathi D et al (2008) Wild cane as renewable source for fuel and fibre in the paper industry. Curr Sci 95(11):1599–1602

    Google Scholar 

  • Amalraj VA, Chinnaraj S, Subramannian S et al (2012) Wild cane for paper and bioenergy. Sugarcane Breeding Institute, Coimbatore

    Google Scholar 

  • Andru S, Pan YB, Thongthawee S et al (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123(1):77–93

    Article  PubMed  Google Scholar 

  • Arceneaux A (1965) Cultivated sugarcane of the world and their botanical derivation. In: Proceedins of the ISSCT XII, pp 844–854

    Google Scholar 

  • Arencibia A, Vazquez RI, Prieto D et al (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247–255

    Article  Google Scholar 

  • Arencibia AD, Carmona ER, Tellez P et al (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    Article  CAS  Google Scholar 

  • Arencibia A, Carmona E, Cornide MT et al (1999) Somaclonal variation in insect resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona E, Cornide MT et al (2000) Transgenic sugarcane (Saccharum spp). In: Bajaj SS (ed) Biotechnology in agriculture and forestry 46. Transgenic crops 1. Springer, Heidelberg, pp 188–206

    Google Scholar 

  • Arro JA (2005) Genetic diversity among sugarcane clones using target region amplification polymorphism (TRAP) markers and pedigree relationships. Master’s thesis, Louisiana State University, Baton Rouge

    Google Scholar 

  • Artschwager E, Brandes EW (1958) Sugarcane (Saccharum officinarum L.): origin, classification, characteristics, and descriptions of representative clones. USDA Agric Handbook 122, US Gov Print Office, Washington DC

    Google Scholar 

  • Babu CN, Ethirajan AS (1962) A note on use of S. spontaneum L. in sugarcane breeding. Proc ISSCT 11:464–469

    Google Scholar 

  • Balakrishnan R, Nair NV, Sreenivasan TV (2000) A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data. Genet Resour Crop Evol 47:1–9

    Article  Google Scholar 

  • Balsalobre TWA, da Guilherme SP, Margarido GRA et al (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:120–131

    Article  CAS  PubMed  Google Scholar 

  • Banasiak M, Snyman SJ (2017) Exploring in vitro germplasm conservation options for sugarcane (Saccharum spp. hybrids) in South Africa. In Vitro Cell Dev Biol-Plant 53:402–409

    Article  Google Scholar 

  • Barocci S, Re L, Capotani C et al (1999) Effects of some extracts on the acetyl-choline release at the mouse neuromuscular joint. Pharmacol Res 39:239–245

    Article  PubMed  Google Scholar 

  • Berding N, Hogarth M, Cox M (2004) Plant improvement of sugarcane. In: Glyn J (ed) Sugarcane. Blackwell Science Publication, Oxford, pp 20–53

    Chapter  Google Scholar 

  • Besse P, Tylor G, Carroll B et al (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetics 104(2):143–153

    CAS  Google Scholar 

  • Bor NL (1960) The grasses of Burma, Ceylon, India and Pakistan. Pergamon Press, London

    Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    Article  CAS  Google Scholar 

  • Brekhman II, Nestetenko IF, Khasina EI, Zorikov PS (1978) Effect of yellow cane sugar on the performance and the degree of stress manifestations in animal. Vopr Pitan 6:69–70

    Google Scholar 

  • Brisibe EA, Miyake H, Taniguchi T, Maeda E (1994) Regulation of somatic embryogenesis in long-term callus cultures of sugarcane (Saccharum officinarum L.). New Phytol 126:301–307

    Article  CAS  Google Scholar 

  • Brumbley SM, Purnell MP, Petrasovits LA et al (2004) Development of sugarcane as a biofactory for biopolymers. Plant & animal genomes XII conference, San Diego, CA, 10–14 January 2004

    Google Scholar 

  • Burnquist WL, Sorrells ME, Tanksley S (1992) Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc Int Soc Sugarcane Technol 21:355–365

    Google Scholar 

  • Butterfield MK, Irvine JE, Garza MV, Mirkov TE (2002) Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane. Theor Appl Genet 104(5):797–803

    Article  CAS  PubMed  Google Scholar 

  • Cao P, Jung KH, Ronald PC (2010) A survey of databases for analysis of plant cell wall-related enzymes. BioEnergy Res 3:108–114

    Article  CAS  Google Scholar 

  • Carmona ER, Rodriguez M, Borroto J, Arencibia AD (2000) Somaclonal variation in transgenic sugarcane plants: practical considerations. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, Amsterdam, pp 62–67

    Google Scholar 

  • Cesnik R, Miocque J (2004) Melhoramento da cana-de-açúcar. Brasília Embrapa

    Google Scholar 

  • Chakravarthi M (2016) Genome editing in sugarcane: challenges ahead. Front Plant Sci 7:1542

    Google Scholar 

  • Chandran K (2010) In vitro multiplication and conservation of Saccharum germplasm. Ind J Plant Genet Resour 23:65–68

    Google Scholar 

  • Chang D, Yang FY, Yan JJ et al (2012) SRAP analysis of genetic diversity of nine native populations of wild sugarcane, Saccharum spontaneum from Sichuan, China. Genet Mol Res 11:1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre SL et al (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum. Plant Sci 160:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro GM, Eliott F, McIntyre CJ et al (2006) Characterization of single nucleotide polymorphism in sugarcane ESTs. Theor Appl Genet 113(2):331–343

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Glaszmann JC (2001) Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugarcane Technol 24:556–559

    Google Scholar 

  • D’Hont A, Rao PS, Feldmann P et al (1995) Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theor Appl Genet 91:320–326

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P et al (1996) Characterisation of the double structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    Article  PubMed  Google Scholar 

  • Da Silva JAG, Honeycutt RJ, Burnquist W et al (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP and PCR-based markers. Mol Breed 1:165–179

    Article  CAS  Google Scholar 

  • Dal-Bianco M, Carneiro MS, Hotta CR et al (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23:265–270

    Article  CAS  PubMed  Google Scholar 

  • Dalvi SG, Vasekar VC, Yadav A et al (2012) Screening of promising sugarcane somaclones for agronomic traits and smut resistance using PCR amplification of inter transcribed region (ITS) of Sporisorium scitaminae. Sugar Technol 14(1):68–75

    Article  Google Scholar 

  • Daniels J, Daniels CA (1975) Geographical, historical and cultural aspects of the origin of the Indian Chinese sugarcanes S. barberi and S. sinense. Int Soc Sugarcane Technol Sugarcane Breed Newsl 36:4–23

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84

    Chapter  Google Scholar 

  • Daniels J, Smith P, Paton N, Williams CA (1975) The origin of the genus Saccharum. Sugarcane Breed Newsl 36:24–39

    Google Scholar 

  • de Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35

    Article  CAS  Google Scholar 

  • Devarumath RM, Kalwade SB, Kawar PG, Sushir KV (2012) Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Technol 14(4):334–344

    Article  CAS  Google Scholar 

  • Devarumath RM, Kalwade SB, Bundock P, Eliott FG, Henry R (2013a) Independent target region amplification polymorphism (TRAP) and single nucleotide polymorphism (SNP) marker utility in genetic evaluation of sugarcane genotypes. Plant Breed 132:736–747

    Article  CAS  Google Scholar 

  • Devarumath RM, Kalwade SB, Kulkarni PA et al (2013b) Integrating OMICS approaches in sugarcane improvement. In: Debmalya B (ed) OMICS applications in crop science. CRC Press, New York, pp 191–250

    Chapter  Google Scholar 

  • Dillon SL, Shapter FM, Robert HJ et al (2007) Domestication to crop improvement: genetic resources for sorghum and Saccharum (Andropogoneae). Ann Bot 5:975–989

    Article  Google Scholar 

  • El-Abasy M, Motobu M, Na K et al (2003) Protective effects of sugar cane extracts (SCE) on Eimeria tenella infection in chickens. J Vet Med Sci 65:865–871

    Article  PubMed  Google Scholar 

  • Elliott AR, Cambell JA, Bretell RIS, Grof CPL (1998) Agrobacterium mediated transformation of sugarcane using GFP as screenable marker. Aust J Plant Physiol 25:739–743

    CAS  Google Scholar 

  • Enriquez GA, Trujillo LE, Menendez C et al (2000) Sugarcane (Saccharum hybrid) genetic transformation mediated by Agrobacterium tumefaciens: production of transgenic plants expressing proteins with agronomic and industrial value. In: Arencibia AD (ed) Plant genetic engineering: towards the third millennium. Elsevier Science, Amsterdam, pp 76–81

    Google Scholar 

  • Enriquez-Obregon GA, Vazquez-Padron RI, Prieto-Samsonov DL et al (1998) Herbicide resistant sugarcane plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Article  CAS  Google Scholar 

  • Falco MC, Tulmann NA, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2013). http://faostat3.fao.org/. Accessed 30 Nov 2014

  • FAOSTAT (2016). http://www.fao.org/statistics/en

  • Ferreira THS, Tsunada MS, Bassi D et al (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitch MM, Moore PH (1990) Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tissue Organ Cult 20:157–163

    CAS  Google Scholar 

  • Frankel OH (1989) Principles and strategies of evaluation. In: Brown ADH, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 245–260

    Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant sugarcane containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JG et al (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Glaszmann JC, Rott P, Engelmann F (1996) Role of in vitro maintenance of sugarcane for germplasm conservation and exchange. In: Croft BJ, Piggin CM, Wallis ES, Hogarth OM (eds) Sugarcane germplasm conservation and exchange. ACIAR proceedings 67, pp 67–70

    Google Scholar 

  • Govindaraj P, Sindhu R, Balamurugan A, Appunu C (2011) Molecular diversity in sugarcane hybrids (Saccharum spp. complex) grown in peninsular and east coast zones of tropical India. Sugar Technol 13(3):206–213

    Article  Google Scholar 

  • Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 2:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Dufour P et al (1994) Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe. Heredity 73:500–508

    Article  CAS  Google Scholar 

  • Grivet L, D’Hont A, Roques D et al (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and interspecific hybrid. Genetics 142:987–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewald JH, Botha FC (2001) Manipulating sucrose metabolism with a single enzyme: pyrophosphate-dependent phosphofructokinase (PFP). Proc S Afr Sugar Technol Assoc 75:101–103

    Google Scholar 

  • Guiderdoni E, Merot B, Klsomtramage PF et al (1995) Somatic embryogenesis in sugarcane. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 92–113

    Google Scholar 

  • Gurushidze M, Hensel G, Hiekel S et al (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One 9:1–9

    Article  CAS  Google Scholar 

  • Hackel E (1883) Gramineae IV. Andropogoneae, Tristegineae. In: von Martius CFP (ed) Flora Brasil 2(3):245–326

    Google Scholar 

  • Hapase RS, Sushir KV, Hapase PR et al (2010) Studies on variation in interspecific hybrids of Saccharum. Sugar Technol 12(2):155–159

    Article  Google Scholar 

  • Hattori T, Morita S (2010) Energy crops for sustainable bioethanol production: which, where and how? Plant Prod Sci 13:221–234

    Article  Google Scholar 

  • Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621

    Article  Google Scholar 

  • Heinz DJ (1988) Sugarcane improvement through breeding. Development in crop science, II. Elsevier Scientific Publishing Co, Amsterdam

    Google Scholar 

  • Heinz DJ, Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348

    Article  Google Scholar 

  • Heinz DJ, Krishnamurthi M, Nickell LG, Maretzki A (1977) Cell, tissue and organ culture in sugarcane improvement. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, pp 3–17

    Google Scholar 

  • Hitchcock AS (1951) Manual of the grasses of the United States, 2nd rev edn. USDA, Miscellaneous Publication 200, Washington DC

    Google Scholar 

  • Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 51:719–726

    Article  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A et al (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.) 1. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Lledo MD et al (2002) Polygenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine JE, Benda GTA (1987) Transmission of sugarcane diseases in plants derived by rapid regeneration from diseased leaf tissue. Sugarcane 6:14–16

    Google Scholar 

  • Irvine JE, Mirkov TE (1997) The development of genetic transformation of sugarcane in Texas. Sugar J 60:25–29

    Google Scholar 

  • ISMA Statistics (2016). http://www.indiansugar.com/Statics.aspx

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol-Plant 45:291–305

    Article  CAS  Google Scholar 

  • Jankiammal EK (1938) A Saccharum-Zea cross. Nature 142:618–619

    Google Scholar 

  • Jankiammal EK (1941) Intergeneric hybrids of Saccharum. J Genet 41:217–253

    Article  Google Scholar 

  • Jankiammal EK, Singh TSN (1936) Preliminary note on a new Saccharum x Sorghum hybrid. Indian J Agric Sci 6(5):1105–1106

    Google Scholar 

  • Jayabose C, Arumuganathan T, Amalraj VA et al (2017) Compressive force profile of high biomass Erianthus clones. Sugar Technol 19(4):341–346

    Article  CAS  Google Scholar 

  • Joyce PA, McQualter RB, Handley JA et al (1998) Transgenic sugarcane resistant to sugarcane mosaic virus. Proc Aust Soc Sugarcane Technol 20:204–210

    Google Scholar 

  • Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam US, Ghosh SB, De S et al (2008) Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem 106:1154–1160

    Article  CAS  Google Scholar 

  • Kadam US, Shelake RM, Chavhan RL, Suprasanna P (2018) Concerns regarding ‘off-target’ activity of genome editing endonucleases. Plant Physiol Biochem 131:22–30. https://doi.org/10.1016/j.plaphy.2018.03.027

    Article  CAS  PubMed  Google Scholar 

  • Kalwade SB, Devarumath RM (2014) Single strand conformation polymorphism of genomic and EST-SSRs marker and its utility in genetic evaluation of sugarcane. Physiol Mol Biol Plants 20(3):313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasami PA (1964) Studies on intergeneric hybrids of Saccharum spontaneum L. Proc All India Conf Sugarcane Res Dev Workers 5:407–411

    Google Scholar 

  • Kandel R, Yang X, Song J, Wang J (2018) Potentials, challenges, and genetic and genomic resources for sugarcane biomass improvement. Front Plant Sci 9:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannan B, Jung JH, Moxley GW et al (2018) TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J 16(4):856–866

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  CAS  PubMed  Google Scholar 

  • Ladizinsky G (1989) Origin and domestication of the Southwest Asian grain legumes. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman Ltd, London, pp 374–388

    Google Scholar 

  • Lakshmanan P (2006) Somatic embryogenesis in sugarcane- an addendum: sugarcane biotechnology: challenges and opportunities. In Vitro Cell Dev Biol Plant 42:202–205

    Article  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS et al (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation- a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1983) Somaclonal variation and eye spot toxin tolerance in sugarcane. Plant Cell Tissue Organ Cult 2:111–121

    Article  CAS  Google Scholar 

  • Leal MR, Maribona RH, Ruiz A et al (1996) Somaclonal variation as a source of resistance to eye spot disease of sugarcane. Plant Breed 115:37–42

    Article  Google Scholar 

  • Ledon N, Casaco A, Rodríguez V et al (2003) Anti-inflammatory and analgesic effects of a mixture of fatty acids isolated and purified from sugarcane wax oil. Planta Med 69:367–369

    Article  CAS  PubMed  Google Scholar 

  • Lee TSG (1987) Micropropagation of sugarcane (Saccharum spp.). Plant Cell Tissue Organ Cult 10:47–55

    Article  Google Scholar 

  • Leibbrandt NB, Snyman SJ (2001) Initial field testing of transgenic glufosinate ammonium resistant sugarcane. Proc S Afr Sugar Technol Assoc 75:108–111

    Google Scholar 

  • Leibbrandta NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677

    Article  Google Scholar 

  • Leitch U, Bennet MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Li HW, Loh CS, Lee CL (1948) Hybrids between Saccharum officinarum, Miscanthus japonicas and S spontaneum. Bot Bull Acad Sin (Taipei) 2:147–160

    Google Scholar 

  • Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Liu MC (1993) Factors affecting induction, somatic embryogenesis and plant regeneration of callus from cultured immature inflorescences of sugarcane. J Plant Physiol 141:714–720

    Article  Google Scholar 

  • Lo DY, Chen TH, Chien MS et al (2005) Effects of sugar cane extract on the modulation of immunity in pigs. J Vet Med Sci 67(6):591–597

    Article  PubMed  Google Scholar 

  • Ma H, Albert HH, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030

    CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR et al (2004) Agrobacterium mediated genetic transformation and development of herbicide resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Zhang H, Xu N et al (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Montero ME, Martínez J, Engelmann F (2008) Cryopreservation of sugarcane somatic embryos. CryoLetters 29(3):229–242

    PubMed  Google Scholar 

  • Matsuoka S, Kennedy AJ, dos Santos EGD et al (2014) Energy cane: its concept, development, characteristics, and prospects. Adv Bot 2014:1–13,. Article ID 597275. https://doi.org/10.1155/2014/597275

    Article  Google Scholar 

  • McIntyre CL, Casu RE, Drenth J et al (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48(3):391–400

    Article  CAS  PubMed  Google Scholar 

  • McQualter RB, Dale JL, Harding RH et al (2004) Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust J Agric Res 55:139–145

    Article  CAS  Google Scholar 

  • Ming R, Del Monte TA, Hernandez E et al (2002) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45(5):794–803

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Moore PH, Wu KK et al (2010) Sugarcane improvement through breeding and biotechnology. In: Janick J (ed) Plant breeding reviews. Wiley, Oxford, pp 15–118

    Chapter  Google Scholar 

  • Mirajkar SJ, Rai AN, Vaidya ER et al (2017) TRAP and SRAP molecular marker based profiling of radiation induced mutants of Sugarcane (Saccharum officinarum L.). Plant Genet 9:64–70

    Article  CAS  Google Scholar 

  • Mirajkar SJ, Vaidya ER, Suprasanna P (2018) Field assessment of morpho-agronomic and biochemical attributes of promising sugarcane mutants derived through in vitro gamma irradiation. In: DAE-BRNS life sciences symposium 2018 on Frontiers in sustainable agriculture 26th–28th April 2018 BARC, Mumbai

    Google Scholar 

  • Molina V, Arruzazabala ML, Carbajal D et al (2000) Antiplatelet and antithrombotic effect of D-003. Pharmacol Res 42:137–143

    Article  CAS  PubMed  Google Scholar 

  • Moore PH (2009) Sugarcane biology, yield, and potential for improvement. In: Proceedings of the workshop BIOEN on sugarcane improvement, San Pablo, CA. http://www.fapesp.br/materia/5064/bioen/

  • Moore PH, Botha FC (2014) Sugarcane: physiology, biochemistry, and functional biology. Wiley-Blackwell, Ames

    Google Scholar 

  • Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366

    Article  CAS  Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  • Mutant Variety Database (2018) Officially released mutant varieties, FAO-IAEA database http://mvgs.iaea.org/AboutMutantVarities.aspx

  • Nair NV (2008) Sugarcane Breeding Institute, Coimbatore: a perspective. Sugar Technol 10:285–292

    Article  Google Scholar 

  • Nair NV (2011) Sugarcane development programmes in India: an overview. Sugar Technol 13(4):275–280

    Article  CAS  Google Scholar 

  • Nair N, Nair S, Sreenivasan T, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Resour Crop Evol 46:73–79

    Article  Google Scholar 

  • Nair NV, Selvi A, Srinivasan TV, Pushpalatha KN (2002) Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127:219–225

    Article  CAS  Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV et al (2006) Characterization of intergeneric hybrids of Saccharum using molecular markers. Genet Resour Crop Evol 53(1):163–169

    Article  CAS  Google Scholar 

  • Nayak SN, Song J, Villa A et al (2014) Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS One 9(10):e110856. https://doi.org/10.1371/journal.pone.0110856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickell LG (1964) Tissue and cell cultures of sugarcane: another research tool. Hawaii Plant Rec 57:223–229

    Google Scholar 

  • Nikam AA, Devarumath RM, Shitole MG et al (2014) Gamma radiation, in vitro selection for salt (NaCl) tolerance, and characterization of mutants in sugarcane (Saccharum officinarum L.). In Vitro Cell Dev Biol Plant 50(6):766–776

    Article  CAS  Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK et al (1999) Transgenic sugarcane with increased resistance to cane grubs. In: Proceedings of conference of the Australian Society of Sugar Cane Technologists, Townsville, Queensland, Australia, 27–30 April 1999, pp 171–176

    Google Scholar 

  • Ohara S, Terajima Y, Sugimoto SA et al (2005) Biomass ethanol production from sugarcane for energy with supporting current sugar production from. J Jpn Inst Energy 84(11):923–928

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG et al (2007) Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208

    Article  CAS  Google Scholar 

  • Oropeza M, Guevara P, de Garcia E, Ramirez JL (1995) Identification of somaclonal variants of sugarcane (Saccharum spp.) resistant to sugarcane mosaic virus via RAPD markers. Plant Mol Biol Report 13:182–189

    Article  CAS  Google Scholar 

  • Pan YB, Cordeiro GM, Richard EP Jr, Henry RJ (2003) Molecular genotyping of sugarcane clones with microsatellite DNA markers. Maydica 48:319–329

    Google Scholar 

  • Parthasarathy N (1948) Origin of noble sugarcanes (Saccharum officinarum L.). Nature 161:608

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P (2008) Radiation induced in vitro mutagenesis for sugarcane improvement. Sugar Technol 10(1):14–19

    Article  CAS  Google Scholar 

  • Patade VY, Suprasanna P, Kulkarni UG, Bapat VA (2006) Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerant lines in sugarcane. BARC Newsl 273:244–257

    CAS  Google Scholar 

  • Pilger R (1940) Gramineae III: Unterfamilie Panicoideae. In: Engler A, Prantl K (eds) Die naturlichen Pflanzenfamilian, 2nd edn, Band 14e. Duncker and Humblot, Berlin

    Google Scholar 

  • Pinto LR, Oliveria KM, Ulian EC et al (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats genome. Genome 47:795–804

    Article  CAS  PubMed  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugarcane. Econ Bot 17:97–106

    Article  Google Scholar 

  • Ram B, Sahi BK (2000) Database in sugarcane: performance of interspecific hybrids (ISH) clones under sub-tropical environment at Karnal, vol II, SBI, Regional Centre Karnal P10B

    Google Scholar 

  • Roach BT (1972) Nobilisation of sugarcane. Proc Int Soc Sugarcane Technol 14:206–216

    Google Scholar 

  • Roach BT (1977) Utilization of S. spontaneum in sugarcane breeding. Proc ISSCT 16:43–57

    Google Scholar 

  • Roach BT, Daniels J (1987) A review of the origin and improvement of sugarcane. In: Copersucar international sugarcane breeding workshop, vol 1, pp 1–31

    Google Scholar 

  • Santosa DA, Hendroko R, Farouk A, Greiner R (2004) A rapid and highly efficient method for transformation of sugarcane callus. Mol Biotechnol 28:113–119

    Article  CAS  PubMed  Google Scholar 

  • Selman-Housein G, Lopez MA, Hernandez D et al (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci 143:163–171

    Article  CAS  Google Scholar 

  • Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46:394–403

    Article  CAS  PubMed  Google Scholar 

  • Selvi A, Nair NV, Noyer JL et al (2005) Genomic constitution and genetic relationship among the tropical and sub tropical Indian sugarcane cultivars revealed by AFLP. Crop Sci 45:1750–1757

    Article  CAS  Google Scholar 

  • Sengar RS, Sengar K, Garg SK (2011) Biotechnological approaches for high sugarcane yield. Plant Sci Feed 1(7):101–111

    Google Scholar 

  • Senthil Kumar S, Govindraj P, Appunu C (2015) Morphological and molecular characterization of high biomass IGH, ISH and Saccharum hybrids. Sugar Technol 17(3):243–251

    Article  CAS  Google Scholar 

  • Shadmehr A, Ramshini H, Zeinalabedini M et al (2017) Phenotypic variability assessment of sugarcane germplasm (Saccharum officinarum L.) and extraction of an applied mini-core collection. Agriculture 7(7):55

    Article  Google Scholar 

  • Shahi HN (2000) Sugarcane seed: production and certification. In: Shahi HN, Srivastava AK, Sinha OK (eds) 50 years of sugarcane research in India. Indian Institute of Sugarcane Research, Lucknow, pp 251–260

    Google Scholar 

  • Shrivastava S, Gupta P (2008) Inter simple sequence repeat profile as a genetic marker system in sugarcane. Sugar Technol 10(1):48–52

    Article  Google Scholar 

  • Shrivastava AK, Srivastava S (2012) Sugarcane physiological and molecular approaches for improving abiotic stress tolerance and sustaining crop productivity. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress, vol 2. Wiley Blackwell, Weinheim, pp 885–992

    Chapter  Google Scholar 

  • Shrivastava AK, Srivastava S (2016) Diversity of the germplasm of Saccharum species and related genera available for use in directed breeding programmes for sugarcane improvement. Curr Sci 111(3):475–482

    Article  CAS  Google Scholar 

  • Singh RK, Srivastava S, Singh SP et al (2008) Identification of new microsatellite DNA markers for sugar and related traits in sugarcane. Sugar Technol 10(4):327–333

    Article  CAS  Google Scholar 

  • Singh RB, Singh B, Singh RK (2015) Development of microsatellites (SSRs) markers and evaluation of genetic variability within sugarcane commercial varieties (Saccharum spp. hybrids). Int J Adv Res 3(12):700–708

    CAS  Google Scholar 

  • Snyman SJ, Watt MP, Huckett BI, Botha FC (2000) Direct somatic embryogenesis for rapid, cost effective production of transgenic sugarcane (Saccharum spp. hybrids). Proc S Afr Sugar Technol Assoc 74:186–187

    Google Scholar 

  • Soloman S (2014) Sugarcane agriculture and sugar industry in India: at a glance. Sugar Technol 16(2):113–124

    Article  Google Scholar 

  • Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792

    Article  CAS  PubMed  Google Scholar 

  • Souza GM, Berges H, Bocs S et al (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4:145–156

    Article  CAS  Google Scholar 

  • Sreenivasan TV (2004) Improving indigenous sugarcane of India. Sugar Technol 6(3):107–111

    Article  Google Scholar 

  • Sreenivasan TV, Jalaja NC (1998) Induced mutations and somaclonal variation in sugarcane. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop breeding. Kluwer Academic, Dordrecht

    Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–254

    Chapter  Google Scholar 

  • Srivastava HM, Srivastava S (2000) Sugarcane breeding and varietal improvement during last fifty years (1947-–97) in India. In: Shahi HN, Srivastava AK, Sinha OK (eds) 50 years of sugarcane research in India. ISSR, Lucknow

    Google Scholar 

  • Srivastava HM, Srivasatva S, Kumar R, Misra GP (1999) Genetic divergence among interspecific hybrids of sugarcane. Sugar Technol 1:19–22

    Article  Google Scholar 

  • Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147

    Article  Google Scholar 

  • Stevenson GC (1965) Genetics and breeding of sugarcane. Longman, London

    Google Scholar 

  • Suman A, Kimbeng C, Edme S, Vermis J (2008) Sequence related amplified polymorphism (SRAP) markers for accessing genetic relationship and diversity in sugarcane germplasm collections. Plant Genet Resour 6:222–231

    Article  Google Scholar 

  • Suman A, Ali K, Arro J et al (2012) Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes. Bioenergy Res 5:197–205

    Article  CAS  Google Scholar 

  • Suprasanna P (2010) Biotechnological interventions in sugarcane improvement: strategies, methods and progress. BARC Newsl 316:47–53

    CAS  Google Scholar 

  • Suprasanna P, Bapat VA (2005) Integrated approaches of plant biotechnology for crop improvement. In: Applications of biotechnology in agriculture and food processing sectors in Konkan. Proceedings of national conference on Indian society environmental science technology, pp 26–38

    Google Scholar 

  • Suprasanna P, Rupali C, Desai NS, Bapat VA (2005) Regulation of somatic embryogenesis by using different plant growth regulators in sugarcane (Saccharum officinarum L.). Sugar Technol 7(4):123–128

    Article  Google Scholar 

  • Suprasanna P, Desai NS, Sapna G, Bapat VA (2006) Monitoring genetic fidelity in plants derived through direct somatic embryogenesis in sugarcane by RAPD analysis. J New Seeds 8(3):1–9

    Article  Google Scholar 

  • Suprasanna P, Patade VY, Desai NS et al (2011) Biotechnological developments in sugarcane improvement – an overview. Sugar Technol 13(4):322–335

    Article  CAS  Google Scholar 

  • Suprasanna P, Mirajkar SJ, Patade VY, Jain SM (2014) Induced mutagenesis for improving plant abiotic stress tolerance. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, Wageningen, pp 345–376

    Chapter  Google Scholar 

  • Suprasanna P, Mirajkar SJ, Bhagwat SG (2015) Induced mutations and crop improvement. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol I: plant diversity, organization, function and improvement. Springer, New Delhi, pp 593–617

    Chapter  Google Scholar 

  • Taylor PWJ, Dukic S (1993) Development of an in vitro culture technique for conservation of Saccharum spp. hybrid germplasm. Plant Cell Tissue Organ Cult 34:217–222

    Article  CAS  Google Scholar 

  • Tew TL, Cobil RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 249–272

    Google Scholar 

  • Thirugnanasambandam PP, Hoang NV, Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaidya ER, Mirajkar SJ, Suprasanna P, Khakare MS (2018) Wilt and red rot resistance in promising sugarcane mutants regenerated through in vitro mutagenesis. In: DAE-BRNS life sciences symposium 2018 on Frontiers in sustainable agriculture, 26–28 April 2018, BARC Mumbai

    Google Scholar 

  • van Der Weijde T, Alvim Kamei CL, Torres AF et al (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107

    PubMed  PubMed Central  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD et al (2005) Over expression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362

    Article  CAS  Google Scholar 

  • Walker DIT (1971) Utilization of noble and S. spontaneum germplasm in the West Indies. Proc ISSCT 14:224–232

    Google Scholar 

  • Wang ML, Goldstein C, Su W et al (2004) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178

    Article  CAS  Google Scholar 

  • Wang J, Roe B, Macmil S, Yu Q et al (2010) Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Wang M-L, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Ping W, Xueting L et al (2018) Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization. Mol Cytogenet 11:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Birch RG (1996) Biocontrol of sugarcane leaf scald disease by an isolate of Pantoea dispersa, which detoxifies albicidin phytotoxins. Lett Appl Microbiol 22:132–136

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Sugarcane

Institution

Specialization and research activities

Contact information and website

Sugarcane Breeding Institute (SBI), Coimbatore, India

Research and development pertaining to sugarcane crop improvement

ICAR-Sugarcane Breeding Institute

Coimbatore – 641,007 India.

E-mail: director@sugarcane.res.in

Website: http://sugarcane.icar.gov.in

Indian Institute of Sugarcane Research (IISR), Lucknow, India

Researches and development on fundamental and applied aspects of sugarcane cultivation

Indian Institute of Sugarcane Research

Raibareli Road, P.O. Dilkusha,

Lucknow – 226,002 India.

Email: director.sugarcane@icar.gov.in

Website: http://www.iisr.nic.in

Vasantdada Sugar Institute (VSI), Pune, India

Scientific, technical and educational functions relevant to the sugarcane cultivation and sugar industry

Vasantdada Sugar Institute

Manjari Budruk, Pune – 412,307, India.

Email: vsilib@vsnl.com, webmaster@vsisugar.com

Website: http://www.vsisugar.com

Sugar Research Australia (SRA), Queensland, Australia

Invests and manages portfolios of research, development and adoption projects that drive productivity, profitability and sustainability for the Australian sugarcane industry

Sugar Research Australia

PO Box 86, 50 Meiers Road,

Indooroopilly, Queensland 4068, Australia

Email: sra@sugarresearch.com.au

Website: https://sugarresearch.com.au/

South African Sugarcane Research Institute (SASRI), South Africa

Research and extension work pertaining to varietal improvement, crop protection, crop performance and management, and systems design and optimization

170 Flanders Drive, Mount Edgecombe 4300, South Africa

Email: sasri@sugar.org.za

Website: https://sasri.org.za/

Centro de Tecnologia Canavieira (CTC), Brazil

Sugarcane breeding, rigorous testing and selection for identification of disease resistant varieties. Also employs advanced biotechnology techniques to develop insect-resistant transgenic sugarcane varieties

Fazenda Santo Antônio, S/N, Bairro Santo Antônio

Piracicaba – SP – CEP 13400-970

Caixa Postal 162, Brazil

Website: http://new.ctc.com.br/en/

Email: comunicacao@ctc.com.br

Philippine Sugar Research Institute Foundation (PHILSURIN), Inc., Philippines

Sugarcane research, development and extension activities with the aims to promote the growth and development of the sugar industry through greater and significant participation of the private sector

Rm. 1403, 14th Security Bank Centre, 6776, Ayala Avenue, Makati City, PHILSURIN Experiment Station, VICMICO Cmpd, Victorias City, Makati City/Victorias City, 1226/6119, Philippines

Website: http://philsurin.org.ph/

Email: info@philsurin.org.ph

Sugar Processing Research Institute (SPRI), Inc., USA

Aims to develop processes and analytical methods to increase yield and productivity, to develop innovative processes or technologies and to provide trainings for its members and the international sugar industry

1100 Robert E. Lee Blvd.

New Orleans LA, 70124-4305, USA

Website: http://spriinc.org/

Email: charley@sugarjournal.com

1.2 Appendix II: Genetic Resources of Indian Sugarcane

Cultivar

Important traits

Cultivation location

Co 86249 (Bhavani)

Mid-late variety of tropical India

Moderately resistant to red rot, smut and rust

Tolerant to drought and pests

Erect, medium thick canes with good ratooning Suitable for growing during October and January/February

Cane yield: 104.25 mt/ha

Sucrose content: 18.71%

CCS yield: 14.3 mt/ha

Fiber content: 14.27%

Parentage: CoJ 64 x CoA 7601

Year of identification: 1997

Year of release and notification: 2000

East-coast zone of India (Tamil Nadu, Andhra Pradesh, Orrisa)

Co 2001-13 (Sulabh)

Mid-late variety

High tillering with good rationing

Good for jaggery quality

Resistant to red rot and moderately resistant to smut

Tolerant to drought and salinity

Cane yield: 108.6 mt/ha

Sucrose content: 19.03%

CCS yield: 14.73 mt/ha

Fiber content: 13.43%

Parentage: Co 7806 PC

Year of identification: 2008

Year of release and notification: 2009

Recommended for peninsular zone (Gujarat, Maharashtra, Madhya Pradesh, Karnataka, interior of Tamil Nadu, Kerala and Andhra Pradesh)

Co 238 (Karan 4)

An early maturing variety of subtropical zone

Moderately resistant to red rot disease

Tolerant to low temperature, water stress and waterlogging

Good ratoonability in winter season

Cane yield: 81.1 mt/ha

Sucrose content: 18.0%

CCS yield: 9.95 mt/ha

Fiber content: 13.05%

Parentage: CoLk 8102 x Co 775

Year of identification: 2008

Year of release and notification: 2009

Recommended for cultivation in North western zones of India (Punjab, Haryana, Rajasthan, Uttarakhand, Western and central Uttar Pradesh)

Co 98014 (Karan-1)

An early variety (spring planting)

Resistant or moderately resistant to red rot disease

Tolerant to drought and water logging, suitable for co-generation

Cane yield: 76.29 mt/ha

Sucrose content: 17.59%

CCS yield: 9.26 mt/ha

Parentage: Co 8316 x Co 8213

Year of identification: 2006

Year of release and notification: 2007

Suited to north western zone of India (Punjab, Haryana, Rajasthan, Central and western Uttar Pradesh and Uttarakhand)

Co 0118 (Karan 112)

Early maturing variety of subtropical zone

Non-logging and non-flowering variety

Tolerant to water stress and water logging

Resistant to red rot and wilt

Medium cane thickness

Cane yield: 78.20 mt/ha

Sucrose content: 18.45%

CCS yield: 9.88 mt/ha

Fiber content: 12.78%

Parentage: Co 8347 x Co 86011

Year of identification: 2008

Year of release and notification: 2009

Recommended for cultivation in North western zones of India (Punjab, Haryana, Rajasthan, Uttarakhand, Western and central Uttar Pradesh)

Co 99004 (Damodar)

A mid-late variety with shy flowering habit

Resistant to red rot and wilt diseases

Tolerant to drought and salinity conditions

Tolerant to internode borer

Suitable for good quality jaggery making

Cane yield: 116.69 mt/ha

Sucrose at 12th month: 16.83%

CCS yield: 18.76 mt/ha

Fiber content: 14%

Parentage: Co 62175 and Co 86250

Year of identification: 2006

Year of release and notification: 2007

Suited to peninsular India (Gujarat, Maharashtra, interior Andhra Pradesh, Tamil Nadu, Karnataka and Kerala)

CoM 265 (Phule 265)

Mid-late variety suitable for areas with less availability irrigation water

Moderately susceptible to red rot and wilt diseases, Resistant to smut disease

High ratoon yield potential

Cane yield: 199.80 mt/ha

Sucrose at 12th month: 19.33%

CCS yield: 21.79 mt/ha

Fiber content: 14%

Parentage: Co 87044 GC

Year of identification: 2009

Recommended for peninsular zone of India (Gujarat, Maharashtra, Kerala, Karnataka, interior of Tamil Nadu and Andhra Pradesh, Madhya Pradesh and Chhattisgarh)

CoC 671 (Vasant-1)

Early maturity

High quality cane, suitable for jaggery making

Susceptible to red rot disease

Cane yield: 135 mt/ha

Sucrose yield: 19.50%

CCS yield: 17.50 mt/ha

Parentage: Q 63 x Co 775

Year of identification: 1982

Recommended in the states of east coast and peninsular zones of India (Maharashtra, Kerala, Karnataka, Interior of Tamil Nadu and Andhra Pradesh and Madhya Pradesh)

Co 86032 (Nayana)

Mid-late maturity

Resistant to smut, field tolerant to red rot and moderately resistant wilt diseases

Tolerant to drought conditions

Cane yield: 102 mt/ha

Sucrose yield: 20.10%

CCS yield: 14.44 mt/ha

Parentage: Co 62198 X CoC 671

Year of identification: 1994

Year of release and notification: 2000

Recommended for peninsular zone of India (Gujarat, Maharashtra, Kerala, Karnataka, interior of Tamil Nadu and Andhra Pradesh, Madhya Pradesh and Chhattisgarh)

Co 09004 (Amritha)

Early maturity

Tolerant to drought and salinity

Moderately resistant to red rot, resistant to smut and yellow leaf disease

Cane yield: 109.85 mt/ha

Sucrose yield: 18.94%

CCS yield: 14.56 mt/ha

Parentage: CoC 671 X CoT 8201

Year of identification: 2017

Year of release and notification: 2017

Recommended for peninsular zone of India (Gujarat, Maharashtra, Kerala, Karnataka, interior of Tamil Nadu and Andhra Pradesh, Madhya Pradesh and Chhattisgarh)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirajkar, S.J., Devarumath, R.M., Nikam, A.A., Sushir, K.V., Babu, H., Suprasanna, P. (2019). Sugarcane (Saccharum spp.): Breeding and Genomics. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_11

Download citation

Publish with us

Policies and ethics