Skip to main content

Genetics and Breeding of Tropical Acacias for Forest Products: Acacia mangium, A. auriculiformis and A. crassicarpa

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Industrial and Food Crops

Abstract

Industrial forest plantations are playing an important role in the forestry sector for both economic and environmental reasons. Some fast- growing species of tropical acacias, such as Acacia mangium, A. auriculiformis, A. crassicarpa and Acacia hybrids are among the most dominant trees in forest industrial plantations in Southeast Asia countries: Indonesia, Malaysia, Vietnam, Thailand and Papua New Guinea. These trees are mainly planted to supply raw materials for pulp and paper, sawn lumber, the plywood industry and wood energy. Improvement through optimizing of silvicultural practices, exploring genetics and breeding of acacias has been gradually taking place. Although progress is still slow, as compared to agricultural crops, due to the age at rotation, larger tree size and extensive site management, some achievements in genetics and breeding of acacias have provided a significant benefit and impact in the operational scale of forest industries. Genetic diversity of acacias is low and most breeding is practiced conventionally under a recurrent selection strategy practiced successively from the first generation to advanced generation breeding cycles. Recently, breeding of acacias is also being developed through hybridization, application of biotechnology and molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal RL (1998) Fundamental of plant breeding and hybrid seed production. Science Publisher, Inc, Enfield

    Google Scholar 

  • Ahmad DH (1990) Vegetative propagation of Acacia mangium by stem cutting: the effect of seedling age and phyllode number on rooting. J Trop For Sci 2(4):274–279

    Google Scholar 

  • Ahmad DH (1991) Micropropagation of Acacia mangium from aseptically germinated seedlings. J Trop For Sci 3(3):204–208

    Google Scholar 

  • Alaklabi A (2015) Phylogenetic study of Acacia species using the molecular marker. Am J Plant Sci 6:3139–3143. https://doi.org/10.4236/ajps.2015.619305

    Article  CAS  Google Scholar 

  • Andrade G, Shah R, Johansson S et al (2011) Somatic embryogenesis as a tool for forest tree improvement: a case-study in Eucalyptus globulus. BMC Proc 5(Suppl 7):P128. https://doi.org/10.1186/1753-6561-5-S7-P128

    Article  PubMed Central  Google Scholar 

  • Anonymous (1982) The genus Acacia in Australia. Australian Acacias leaflet, revised 1982. CSIRO, Canberra

    Google Scholar 

  • Asif MJ, Zaki MA, Norwati M, Wickneswari R (2017) Detecting mislabeling and identifying unique progeny in Acacia mapping population using SNP markers. J For Res 28(6):1119–1127

    Article  CAS  Google Scholar 

  • Asif MJ, Ong SS, Wickneswari R (2018) Characterization of mean stem density, fibre length and lignin from two Acacia species and their hybrid. J For Res 29(2):549–555

    Article  CAS  Google Scholar 

  • Balocchi C, Bridgwater F, Zobel B, Jahromi S (1993) Age trends in genetic parameters for tree height in a nonselected population of loblolly pine. For Sci 39:231–235

    Google Scholar 

  • Barnes RD (1984) A multiple population breeding strategy for Zimbabwe. In: Barnes RD, Gibson GL (eds) Provenance and genetic improvement strategies in tropical forest trees. Proceedings of the IUFRO conference, Mutare, Zimbabwe 1984, pp 619–632

    Google Scholar 

  • Baurens FC, Nicolleau J, Legavre T et al (2004) Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase of change marker. Tree Physiol 24:401–407

    Article  CAS  PubMed  Google Scholar 

  • Beadle CL, Barry KM, Hardiyanto EB et al (2007) Effect of pruning Acacia mangium on growth, form and heart rot. For Ecol Manag 238(1–3):261–267. https://doi.org/10.1016/j.foreco.2006.10.017

    Article  Google Scholar 

  • Booth TH, Jovanovic T, Harwood CE (2014) Planting domains of key species in a changing climatic environment. In: Sustaining the future of acacia plantation forestry international conference, IUFRO working party 2.08.07: genetics and silviculture of acacias, Hue, Vietnam, 18–21 March 2014, Compendium of abstracts

    Google Scholar 

  • Borralho NMG, Dutkowski GW (1996) A ‘rolling–front’ strategy for breeding trees. In: Dieters MJ, Matheson AC, Nikles DG et al (eds) Tree improvement for sustainable tropical forestry. Proceeding of the QFRI-IUFRO conference, Caloundra, Australia, pp 317–322

    Google Scholar 

  • Brain P, Maslin BR (1996) A serological investigation of the classification of Acacia subg. Phyllodineae (Leguminosae: Mimosoideae). Biochem Syst Ecol 24:379–392

    Article  CAS  Google Scholar 

  • Brawner J, Japarudin Y, Lapammu M et al (2015) Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. South For J For Sci 77:83–90

    Article  Google Scholar 

  • Burdon RD (1994) The place of biotechnology in forest tree breeding. Forest genetic resources no. 22. FAO, Rome

    Google Scholar 

  • Butcher PA, Moran GF, Perkins HD (1998) RFLP diversity in the nuclear genome of Acacia mangium. Heredity 81:205–213

    Article  CAS  Google Scholar 

  • Chaudary RC (1984) Introduction to plant breeding. Oxford & IBH Publishing Co, New Delhi

    Google Scholar 

  • Cotteril PP, Dean CA (1988) Change in the genetic control of growth of radiate pine to 16 years and efficiencies of early selection. Silvae Genet 38:138–146

    Google Scholar 

  • Darus HA (1991) Micropropagation technique for Acacia mangium × Acacia auriculiformis. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias. Proceeding internal workshop in Tawau, Sabah, Malaysia, 1–4 July 1991, pp 119–121

    Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman House, London

    Google Scholar 

  • Galiana A, Chaumont J, Diem HG, Dommergues YR (1990) Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biol Fertil Soils 9(3):261–267. https://doi.org/10.1007/BF00336237

    Article  Google Scholar 

  • Galiana A, Goh D, Chevallier MH et al (2003) Micropropagation of A. mangium × A. auriculiformis hybrids in Sabah. Boit For Trop 275(1):77–82

    Google Scholar 

  • Gan E, Sim BL (1991) Nursery identification of hybrid seedlings in open plots. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias, ACIAR proceeding, Canberra 1991, pp 76–87

    Google Scholar 

  • Griffin AR, Vuong TD, Harbard JL et al (2010) Improving controlled pollination methodology for breeding Acacia mangium Willd. New For 40:131–142

    Article  Google Scholar 

  • Griffin AR, Nambiar EKS, Harwood CE, Lee SS (2015a) Sustaining the future of Acacia plantation forestry – a synopsis. South For 77:v–viii. https://doi.org/10.2989/20702620.2015.1011380

    Article  Google Scholar 

  • Griffin AR, Nghiem QC, Harbard JL et al (2015b) Breeding polyploid varieties of tropical acacias: progress and prospects. South For 77:41–50

    Article  Google Scholar 

  • Gunn BV, Midgley SJ (1991) Exploring and accessing the genetic resources of four selected tropical acacias. In: Turnbull JW (ed) Advances in tropical Acacia research. ACIAR proceedings no. 35, pp 57–63

    Google Scholar 

  • Hai PH, Harwood C, Kha LD et al (2008) Genetic gain from breeding Acacia auriculiformis in Vietnam. J Trop For Sci 20:313–327

    Google Scholar 

  • Hardiyanto EB (2004) Silvikultur dan Pemuliaan Acacia mangium. In: Hardiyanto EB, Arisman H (eds) Pembangunan hutan tanaman Acacia mangium: pengalaman di PT. Musi Hutan Persada. Polydoor, Yogyakarta, pp 207–281

    Google Scholar 

  • Hardiyanto EB (2014) Challenges for Acacia breeders. In: ‘Sustaining the future of Acacia plantation forestry’ international conference, IUFRO working party 2.08.07: genetics and silviculture of Acacias, Hue, Vietnam, 18–21 March 2014, Compendium of abstracts

    Google Scholar 

  • Hardiyanto EB, Nambiar EKS (2014) Productivity of successive rotations of Acacia mangium plantations in Sumatra, Indonesia: impacts of harvest and inter-rotation site management. New For 45(4):557–575. https://doi.org/10.1007/s11056-014-9418-8

    Article  Google Scholar 

  • Harrier LA, Whitty PW, Sutherland JM, Sprent JI (1997) Phenetic investigation of non-nodulating African species of Acacia (Leguminosae) using morphological and molecular markers. Plant Syst Evol 205:27–51

    Article  Google Scholar 

  • Harwood CE, Nambiar EKS (2013) Sustainable plantation forestry in South East Asia. Client report EP14685 to Australian Centre for International Agricultural Research. Sustainable Agriculture Flagship and CSIRO Ecosystem Sciences, Canberra, Australia

    Google Scholar 

  • Harwood CE, Nambiar EKS (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 2. Trends and variations. Int For Rev 16:249–260

    Google Scholar 

  • Harwood CE, Hardiyanto EB, Wong CY (2015) Genetic improvement of tropical acacias: achievements and challenges. South For 77:11–18. https://doi.org/10.2989/20702620.2014.999302

    Article  Google Scholar 

  • Hazubska-PrzybyÅ‚ T, Bojarczu K (2016) Tree somatic embryogenesis in science and forestry. Dendrobiology 76:105–116

    Article  Google Scholar 

  • Huong VD, Nambiar EKS, Quang LT et al (2015) Improving productivity and sustainability of successive rotations of Acacia auriculiformis plantations in South Vietnam. South For 77:51–58

    Article  Google Scholar 

  • Ibrahim Z (1993) Reproductive biology. In: Awang K, Taylor D (eds) Acacia mangium growing and utilization. Winrock International and the Food and Agriculture Organization of the United Nations, Bangkok, pp 21–34

    Google Scholar 

  • Ibrahim Z, Awang K (1991) Flowering and fruiting phenology of Acacia mangium and Acacia auriculiformis in Peninsular Malaysia. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias. Australian Centre for International Agricultural Research, Canberra, pp 45–48

    Google Scholar 

  • Jahan MS, Sabina R, Rubaiyat A (2008) Alkaline pulping and bleaching of Acacia auriculiformis grown in Bangladesh. Turk J Agric Forum 32(4):339–347

    CAS  Google Scholar 

  • Kalita RM, Rahman M, Borogayary et al (2016) Carbon storage potential of Acacia plantation: a viable option for climate change mitigation. In: Proceedings international conference on climate change mitigation and technologies for adaptation, 20–21 June 2016, Meghalaya, India, pp 115–118

    Google Scholar 

  • Kha LD (2001) Studies on the use of natural hybrids between Acacia mangium and Acacia auriculiformis in Vietnam. Agriculture Publishing House, Hanoi

    Google Scholar 

  • Kurinobu S, Rimbawanto A (2002) Genetic improvement of plantation species in Indonesia–summary of project achievement (JICA forest tree improvement phase II). In: Rimbawanto A, Susanto M (eds) Proceedings of international conference on advances in genetic improvement of tropical tree species, 1–3 October 2002, Yogyakarta, Indonesia. Centre for Forest Biotechnology and Tree Improvement, Yogyakarta, pp 158–163

    Google Scholar 

  • Laksmi MN, Gopakumar S (2009) Morphological keys for four Australian Acacia species grown in Kerala, India. J Trop Agric 47(1–2):62–66

    Google Scholar 

  • Lambeth CC (1980) Juvenile–mature correlations in Pinaceae and implications for early selection. For Sci 26:571–580

    Google Scholar 

  • Lambeth CC, van Buijtenen JP, McCollourgh RB, Duke SD (1983) Early selection is effective in 20–year–old genetic tests of loblolly pine. Silvae Genet 32:210–215

    Google Scholar 

  • Le DK, Ha HT (2016) Research and development of acacia hybrids for commercial planting in Vietnam. Life Sci Agric 1(1):36–42

    Google Scholar 

  • Libby WJ, Ahuja MR (1993) The genetics of clones. In: Ahuja MR, Libby WJ (eds) Clonal forestry I. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lindgren D (1993) The population biology of clonal deplyment. In: Ahuja MR, Libby WJ (eds) Clonal forestry I. Springer, New York, pp 34–49

    Chapter  Google Scholar 

  • Luangviriyasaeng V (2007) Current situation and potential of Acacia plantation for pulp industry. NFT News 10(1):1–5

    Google Scholar 

  • Mackey M (1996) Acacia mangium: an important multipurposes species tree for the tropic lowlands. FACT Sheet 96–03

    Google Scholar 

  • McKeand S (1988) Optimum age for family selection for growth in genetic test of loblolly pine. For Sci 34:400–411

    Google Scholar 

  • McKeand SE, Beineke WF (1980) Sublining for half–sib breeding populations of forest trees. Silvae Genet 29:14–17

    Google Scholar 

  • Monteuuis O (2004) In vitro micro propagation and rooting of microshoots from juvenile and mature origins. In Vitro Cell Dev Biol 40(1):102–107

    Article  Google Scholar 

  • Monteuuis O, Vallauri D, Poupard C, Chauviere M (1995) Rooting Acacia mangium cuttings of different physiological age with reference to leaf morphology as a phase change marker. Silvae Genet 44(2–3):150–154

    Google Scholar 

  • Moran GF, Muona O, Bell JC (1988) Acacia mangium: a tropical forest tree of the coastal lowlands with low genetic diversity. Evolution 43:231–235

    Google Scholar 

  • Moran GF, Muona O, Bell JC (1989) Breeding systems and genetic diversity in Acacia auriculiformis and A. crassicarpa. Biotropica 21:250–256

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy DJ, Miller JT, Bayer RJ, Ladiges PY (2003) Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the internal transcribed spacer region. Aust Syst Bot 16:19–26

    Article  CAS  Google Scholar 

  • Namkoong G, Conkle M (1976) Time trends in genetic control of height growth in ponderosa pine. For Sci 22:2–12

    Google Scholar 

  • Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer, New York

    Book  Google Scholar 

  • Nghiem QC (2012) Effect of ploidy level on the reproductive biology tropical Acacia species. Dissertation, University of Tasmania, Australia

    Google Scholar 

  • Nikles DG (1989) Developing genetically improved eucalyptus in South East China: backrground information and appropriate strategies. 4th technical exchange seminar of China–Australia afforestation project, People’s Republic of China

    Google Scholar 

  • Nirsatmanto A, Kurinobu S, Shiraishi S (2012) Evaluation for the efficiency of early selection in Acacia mangium seedling seed orchards based on age trends in genetic parameter. Indones J For Res 9(1):16–24. https://doi.org/10.20886/ijfr.2012.9.1.16-24

    Article  Google Scholar 

  • Nirsatmanto A, Setyaji T, Wahyuningtyas RS (2014) Realized genetic gain and seed source x interaction on stand volume productivity of Acacia mangium. Indones J For Res 1(1):21–32. https://doi.org/10.20886/ijfr.2014.1.1.21–32

    Article  Google Scholar 

  • Nirsatmanto A, Setyaji T, Sunarti S, Kartikaningtyas D (2015) Genetic gain and projected increase in stand volume from two cycles breeding program of Acacia mangium. Indones J For Res 2(2):71–79. https://doi.org/10.20886/ijfr.2015.2.2.71–79

    Article  Google Scholar 

  • Opick H, Rofle S (2006) The physiology of flowering plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Otsamo AO, Nikles DG, Vuokko RHO (1996) Species and provenance variation of candidate acacias for afforestation of Imperata cylindrica grasslands in South Kalimantan, Indonesia. In: Dieters MJ, Matheson AC, Nikles DG et al (eds) Tree improvement for sustainable tropical forestry. Queensland Forestry Research Institute, Gympie, pp 46–50

    Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants. Elsevier, Amsterdam

    Google Scholar 

  • Pawson SM, Brin A, Brokerhoff G et al (2013) Plantation forests, climate change and biodiversity. Biodivers Conserv 22:1203–1227

    Article  Google Scholar 

  • Pinyopusarerk K, Liang SB, Gunn BV (1993) Taxonomy, distribution, biology, and use as an exotic. In: Awang K, Taylor D (eds) Acacia mangium growing and utilization, MPTS monograph series no. 3, Winrock International & FAO, Bangkok, Thailand, pp 1–18

    Google Scholar 

  • Rufelds CW (1988) Acacia mangium, Acacia auriculiformis and hybrid A. mangium × A. auriculiformis seedling morphology study. FRC Publication No 41. Forest Research Center Publication, Sandakan, Malaysia

    Google Scholar 

  • Sedgley M, Harbard J, Smith RM et al (1992) Reproductive biology and interspecific hybridization of Acacia mangium Willd. and A. auriculiformis A. Cunn. Ex. Benth (Leguminosae: Mimosoideae). Aust J Bot 40:37–48

    Article  Google Scholar 

  • Siregar STH, Hardiyanto EB, Gales K (1999) Acacia mangium plantations in PT Musi Hutan Persada, South Sumatera. In: Nambiar EKS, Cossalter C, Tiarks A (eds) Site management and productivity in tropical plantation forests. Proceedings of workshop proceedings, 16–20 February 1998, Pietermaritzburg, South Africa. Center for International Forestry Research (CIFOR), Bogor, Indonesia, pp 39–44

    Google Scholar 

  • Sunarti S, Na’iem M, Hardiyanto EB, Indrioko S (2013) Breeding strategy of Acacia hybrid (A. mangium × A. auriculiformis) to increase forest plantation productivity in Indonesia. J Trop For Manag 19(2):128–137

    Google Scholar 

  • Suryantini R, Wulandari R (2018) Diversity of Ganoderma pathogen in Pontianak, West Kalimantan: characteristics, virulence and ability to infect Acacia mangium seedling. Biodiversitas 19(2):465–471

    Article  Google Scholar 

  • Tarigan M, Roux J, van Wyk M et al (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp nov. in Indonesia. S Afr J Bot 77:292–304

    Article  Google Scholar 

  • Tenorio C, Moya R, Quesada-Pineda HJ (2012) Kiln drying of Acacia mangium wood: colour, shrinkage, warp, split and check in dried lumber. J Trop For Sci 24(1):125–139

    Google Scholar 

  • Thomson LAJ (1994) Acacia aulacocarpa, A. cincinnata, A. crassicarpa and A. wetarensis: an annotated bibliography. CSIRO Division of Forestry, Canberra

    Google Scholar 

  • Tropenbos, APRIL & Ministry of Forestry (2010) HCVA assessment report of the Kampar Peninsula Riau. Presented in three volumes: Book I – Data Dan Informasi Dasar Penilaian Menyeluruh Nilai Konservasi Tinggi Semenanjung Kampar; Book II – Pengelolaan Kolaboratif Semenanjung Kampar; Book III – Penilaian Menyeluruh Nilai Konservasi Tinggi PT, RAPP Ring Semenanjung Kampar

    Google Scholar 

  • Turnbull JW, Midgley SJ, Cossalter C (1997) Tropical acacias planted in Asia: an overview of recent developments in acacias planting. In: Turnbull JW, Crompton HR, Pinyopusarerk K (eds) Recent developments in acacia planting, ACIAR proceedings no. 82, Canberra, pp 14–28

    Google Scholar 

  • van Buijtenen JP, Lowe WJ (1979) The use of breeding groups in advanced–generation breeding. In: Proceeding 15th southern forest tree improvement conference, Starkville, Miss, pp 59–65

    Google Scholar 

  • Wang BSP (1991) Evaluating, interpreting and reporting seedling test result. In: Standard germination test. Training course proceeding. ASEAN-Canada Forest Tree Seed Centre, Thailand

    Google Scholar 

  • Wang X, Cui K (2000) The effects of age and multiploidy on fiber characteristics in Acacia mangium. Sci Silvae Sin 36:125–130

    Google Scholar 

  • Werren M (1991) Plantation development of Acacia mangium in Sumatra. In: Turnbull JW (ed) Advances in tropical acacia research. ACIAR proceeding no. 35, pp 107–109

    Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International, Cambridge

    Book  Google Scholar 

  • Wickneswari R, Norwati M (1993) Genetic diversity of natural-populations of Acacia auriculiformis. Aust J Bot 41:65–77. https://doi.org/10.1071/BT9930065

    Article  Google Scholar 

  • Widyatmoko AYPBC, Watanabe A, Shiraishi S (2010) Study on genetic variation and relationships among four acacia species using RAPD and SSCP marker. Indones J For Res 7(2):125–143. https://doi.org/10.20886/ijfr.2010.7.2.125-143

    Article  Google Scholar 

  • Wong CY, Yuliarto M (2014) Deployment of acacias in short rotation pulpwood plantation. In: Acacia 2014 sustaining the future of Acacia plantation forestry international conference, IUFRO working party 2.08.07: genetics and silviculture of Acacias, Hue, Vietnam, 18–21 March 2014, Compendium of abstracts

    Google Scholar 

  • Wright JW (1976) Introduction to forest genetics. Academic, New York

    Google Scholar 

  • Wu T, Fang G, Liang L et al (2018) Analysis of mixed pulping raw materials of Eucalyptus globulus and Acacia mangium by near infrared spectroscopy technique combined with LASSO algorithm. Bioresources 13(1):1348–1359

    Article  CAS  Google Scholar 

  • Yamamoto K, Sulaiman O, Kitingan C et al (2003) Moisture distribution in stems of Acacia mangium, A. auriculiformis and hybrid Acacia trees. Jpn Agric Res Q 37:207–212

    Article  Google Scholar 

  • Yang M, Xie X, He X, Zhang F (2006) Plant regeneration from phyllode explants of Acacia crassicarpa via organogenesis. Plant Cell Tissue Organ Cult 85:241–245

    Article  Google Scholar 

  • Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Nirsatmanto .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Acacias

Institution

Area of specialization and research activities

Web-site

Center for Forest Biotechnology and Tree Improvement (CFBTI), Indonesia

Forest biotechnology, forest genetic conservation, forest tree improvement. Engaged in molecular genetics, genetic trials, seed production and hybridization

www.biotifor.or.id

Institute of Forest Tree Improvement and Biotechnology, Vietnam

Biotechnology and tree improvement. Engaged in Genetic trials, seed production, hybridization and polyploid Breeding

www.vafs.gov/en/

Forest Research Institute Malaysia (FRIM)

Forestry and environment, forest biotechnology, forest biodiversity, natural product, economic and strategic analysis, and social forestry. Engaged in molecular genetics, genetic trials and genomics

www.frim.gov.my/

ACIAR-FST/2014/068

Project on pest and disease of tropical acacias in Indonesia and Vietnam. Engaged in root rot disease, wilt disease and biological control agents (BCA)

http://aciar.gov.au/project/fst/2014/068

1.2 Appendix II: Genetic Resources of Acacias

Species

Important traits

Cultivation location

Acacia mangium

Good growth and wood properties suitable for pulp and paper, sawn lumber, wood energy industries, specifically on drylands

Indonesia, Vietnam, Malaysia

Acacia crassicarpa

Good growth and wood properties suitable for pulp and paper, sawn lumber, wood energy industries, specifically on wetlands

Indonesia

Acacia auriculiformis

Good growth and wood properties suitable sawn lumber and wood energy industries, specifically on degraded land and poor soil nutrients

Indonesia, Vietnam

Acacia hybrid

Good growth and wood properties suitable for pulp and paper, sawn lumber, wood energy industries specifically on drylands

Vietnam

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nirsatmanto, A., Sunarti, S. (2019). Genetics and Breeding of Tropical Acacias for Forest Products: Acacia mangium, A. auriculiformis and A. crassicarpa. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_1

Download citation

Publish with us

Policies and ethics