Skip to main content

Nondeterminism Growth and State Complexity

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11612))

Included in the following conference series:

Abstract

Tree width (respectively, string path width) measures the maximal number of partial (respectively, complete) computations of a nondeterministic finite automaton (NFA) on an input of given length. We study the growth rate of the tree width and string path width measures. As the main result we show that the degree of the polynomial bounding the tree width of an NFA differs by at most one from the degree of the polynomial bounding the string path width. Also we show that for \(m \ge 4\) there exists an m-state NFA with finite string path width such that any equivalent finite tree width NFA needs \(2^{m-2} + 1\) states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86(2), 179–194 (1990)

    Article  MathSciNet  Google Scholar 

  3. Han, Y.S., Salomaa, A., Salomaa, K.: Ambiguity, nondeterminism and state complexity of finite automata. Acta Cybern. 23(1), 141–157 (2017)

    Article  MathSciNet  Google Scholar 

  4. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011). https://doi.org/10.1016/j.ic.2010.11.013

    Article  MathSciNet  MATH  Google Scholar 

  5. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172(2), 202–217 (2002). https://doi.org/10.1006/inco.2001.3069

    Article  MathSciNet  MATH  Google Scholar 

  6. Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_16

    Chapter  Google Scholar 

  7. Keeler, C., Salomaa, K.: Cycle height of finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 200–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_17

    Chapter  Google Scholar 

  8. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bull. EATCS 111, 70–86 (2013)

    MathSciNet  Google Scholar 

  9. Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

    Article  MathSciNet  Google Scholar 

  10. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)

    Article  MathSciNet  Google Scholar 

  11. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989). https://doi.org/10.1137/0218083

    Article  MathSciNet  MATH  Google Scholar 

  13. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  14. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325–349 (1991). https://doi.org/10.1016/0304-3975(91)90381-B

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Keeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keeler, C., Salomaa, K. (2019). Nondeterminism Growth and State Complexity. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds) Descriptional Complexity of Formal Systems. DCFS 2019. Lecture Notes in Computer Science(), vol 11612. Springer, Cham. https://doi.org/10.1007/978-3-030-23247-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23247-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23246-7

  • Online ISBN: 978-3-030-23247-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics