Abstract
Tree width (respectively, string path width) measures the maximal number of partial (respectively, complete) computations of a nondeterministic finite automaton (NFA) on an input of given length. We study the growth rate of the tree width and string path width measures. As the main result we show that the degree of the polynomial bounding the tree width of an NFA differs by at most one from the degree of the polynomial bounding the string path width. Also we show that for \(m \ge 4\) there exists an m-state NFA with finite string path width such that any equivalent finite tree width NFA needs \(2^{m-2} + 1\) states.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)
Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inf. Comput. 86(2), 179–194 (1990)
Han, Y.S., Salomaa, A., Salomaa, K.: Ambiguity, nondeterminism and state complexity of finite automata. Acta Cybern. 23(1), 141–157 (2017)
Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inf. Comput. 209(3), 456–470 (2011). https://doi.org/10.1016/j.ic.2010.11.013
Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inf. Comput. 172(2), 202–217 (2002). https://doi.org/10.1006/inco.2001.3069
Keeler, C., Salomaa, K.: Branching measures and nearly acyclic NFAs. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 202–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_16
Keeler, C., Salomaa, K.: Cycle height of finite automata. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 200–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94631-3_17
Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bull. EATCS 111, 70–86 (2013)
Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)
Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)
Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Autom. Lang. Comb. 17(2–4), 245–264 (2012)
Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989). https://doi.org/10.1137/0218083
Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2008)
Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325–349 (1991). https://doi.org/10.1016/0304-3975(91)90381-B
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 IFIP International Federation for Information Processing
About this paper
Cite this paper
Keeler, C., Salomaa, K. (2019). Nondeterminism Growth and State Complexity. In: Hospodár, M., Jirásková, G., Konstantinidis, S. (eds) Descriptional Complexity of Formal Systems. DCFS 2019. Lecture Notes in Computer Science(), vol 11612. Springer, Cham. https://doi.org/10.1007/978-3-030-23247-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-23247-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23246-7
Online ISBN: 978-3-030-23247-4
eBook Packages: Computer ScienceComputer Science (R0)