Skip to main content

Ovarian Cortical Tissue Biopsy and Freezing for Autotransplantation

  • Chapter
  • First Online:
Diminished Ovarian Reserve and Assisted Reproductive Technologies
  • 598 Accesses

Abstract

Ovarian cortical tissue freezing and transplantation, although considered experimental, is an established method of fertility preservation in reproductive age women at risk of losing their fertility. The number of live births following autotransplantation of the frozen-thawed ovarian tissue increased significantly worldwide during the last 15 years, exceeding 130 cumulative live births in 2017. This chapter focuses on the technique of ovarian transplantation, with special emphasis on in vitro maturation and artificial ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkes AS, Smith AU. Regeneration of rat ovarian tissue grafted after exposure to low temperatures. Proc R Soc Lond B Biol Sci. 1953;140(901):455–70.

    Article  CAS  PubMed  Google Scholar 

  2. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autographs at e196 degrees C. Hum Reprod. 1994;9:597–603.

    Article  CAS  PubMed  Google Scholar 

  3. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11(7):1487–91.

    Article  CAS  PubMed  Google Scholar 

  4. Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342(25):1919.

    Article  CAS  PubMed  Google Scholar 

  5. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet (London, England). 2004;364(9443):1405–10.

    Article  CAS  Google Scholar 

  6. Gellert SE, Pors SE, Kristensen SG, Bay-Bjorn AM, Ernst E, Yding Andersen C. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet. 2018;35(4):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donnez JA, Dolmans M. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65.

    Article  PubMed  Google Scholar 

  8. Kutluk Oktay BEH, Partridge AH, Quinn GP, Reinecke J, Taylor HS, Hamish Wallace W, Wang ET, Loren AW. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2018;38(19):1994–2001.

    Article  Google Scholar 

  9. Salama M, Woodruff TK. New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Rev. 2015;34(4):807–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  Google Scholar 

  11. Demeestere I, et al. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009;15(6):649–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marci R, et al. Radiations and female fertility. Reprod Biol Endocrinol. 2018;16(1):112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andersen AN. Chemotherapy risks to fertility of childhood cancer survivors. Lancet (London, England). 2016;17(5):540–1.

    Google Scholar 

  14. Bea G. Reproductive outcomes after a childhood and adolescent young adult cancer diagnosis in female cancer survivors: a systematic review and meta-analysis. J Adolesc Young Adult Oncol. 2018;7:627–42.

    Article  Google Scholar 

  15. Kitajima M, Dolmans M, Donnez O, Masuzaki H, Soares M, Donnez J. Enhanced follicular recruitment and atresia in cortex derived from ovaries with endometriomas. Fertil Steril. 2014;101:1031–7.

    Article  PubMed  Google Scholar 

  16. Nagy ZP, Varghese AC, Agarwal A, editors. Cryopreservation of mammalian gametes and embryos: methods and protocols. New York: The Humana Press; 2017.

    Google Scholar 

  17. Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril. 2014;101(5):1237–43.

    Article  Google Scholar 

  18. Jensen AK, Macklon KT, Fedder J, Ernst E, Humaidan P, Andersen CY. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet. 2017;34(3):325–36.

    Article  PubMed  Google Scholar 

  19. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod. 2009;24:1670–83.

    Article  CAS  PubMed  Google Scholar 

  20. Oktay K, Tilly J. Livebirth after cryopreserved ovarian tissue autotransplantation. Lancet (London, England). 2004;364(9451):2091–2; author reply 2–3

    Article  Google Scholar 

  21. Kim SS, Hwang IT, Lee HC. Heterotopic autotransplantation of cryobanked human ovarian tissue as a strategy to restore ovarian function. Fertil Steril. 2004;82(4):930–2.

    Article  PubMed  Google Scholar 

  22. Oktay K, Buyuk E. Ovarian transplantation in humans: indications, techniques and the risk of reseeding cancer. Eur J Obstet Gynecology Reprod Biol. 2004;113(Suppl 1):S45–7.

    Article  Google Scholar 

  23. Oktay KBE, Rosenwaks Z, Rucinski J. A technique for transplantation of ovarian cortical strips to the forearm. Fertil Steril. 2003;80:193–8.

    Article  PubMed  Google Scholar 

  24. Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, Opsahl M, Rosenwaks Z. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet (London, England). 2004;363(9412):837–40.

    Article  Google Scholar 

  25. Sonmezer M, Oktay K. Orthotopic and heterotopic ovarian tissue transplantation. Best Pract Res Clin Obstet Gynaecol. 2010;24(1):113–26.

    Article  PubMed  Google Scholar 

  26. Donnez J, Dolmans M. Transplantation of ovarian tissue. Best Pract Res Clin Obstet Gynaecol. 2014;28(8):1188–97.

    Article  PubMed  Google Scholar 

  27. Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 C. Endocrinology. 1999;140:462–71.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Madrid B, Dolmans M, Van Langendonckt A, Defrere S, Donnez J. Freeze-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.

    Article  PubMed  Google Scholar 

  29. Arav A, Revel A, et al. Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum Reprod. 2005;20(12):3554–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pacheco F, Oktay K. Current success and efficiency of autology ovarian transplantation: a meta-analysis. Reprod Sci. 2017;24(8):1111–20.

    Article  PubMed  Google Scholar 

  31. Jadoul P, Guilmain A, Squifflet J, Luyckx M, Votino R, Wyns C, et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod. 2017;32(5):1046–54.

    Article  CAS  PubMed  Google Scholar 

  32. Dittrich R, Hackl J, Lotz L, Hoffmann I, Beckmann MW. Pregnancies and live births after 20 transplantations of cryopreserved ovarian tissue in a single center. Fertil Steril. 2015;103(2):462–8.

    Article  PubMed  Google Scholar 

  33. Stoop D, et al. Fertility preservation for age-related fertility decline. Lancet (London, England). 2014;384:1311–9.

    Article  Google Scholar 

  34. Van der Ven H, Liebenthron J, Beckmann M, Toth B, Korell M, Krüssel J, Frambach T, Kupka M, Hohl MK, Winkler-Crepaz K, et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod. 2016;31:2031–41.

    Article  PubMed  Google Scholar 

  35. Donnez J, Dolmans M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet. 2015;32:1167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116:2908–14.

    Article  CAS  PubMed  Google Scholar 

  37. Dolmans MM, Luyckx V, Donnez J, Andersen CY, Greve T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril. 2013;99:1514–22.

    Article  PubMed  Google Scholar 

  38. Tea G. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood. 2012;120(22):4311–6.

    Article  Google Scholar 

  39. Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. In vitro maturation: a committee opinion. Fertil Steril. 2013;99(3):663–6.

    Article  Google Scholar 

  40. Cha KY, Koo JJ, Ko JJ, Choi DH, Han SY, Yoon TK. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril. 1991;55(1):109.

    Article  CAS  PubMed  Google Scholar 

  41. Walls ML, Hart RJ. In vitro maturation. Best Pract Res Clin Obstet Gynaecol. 2018;53:60–72.

    Article  PubMed  Google Scholar 

  42. Creux H, et al. Immature oocyte retrieval and in vitro oocyte maturation at different phases of the menstrual cycle in women with cancer who require urgent gonadotoxic treatment. Fertil Steril. 2017;107:198–204.

    Article  PubMed  Google Scholar 

  43. Creux H, et al. Thirteen years’ experience in fertility preservation for cancer patients after in vitro fertilization and in vitro maturation treatments. J Assist Reprod Genet. 2018;35(4):583–92.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang JY, et al. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril. 2008;89:567–72.

    Article  PubMed  Google Scholar 

  45. Segers I, et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising “ex vivo” method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet. 2015;32(8):1221–31.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sermondade N, et al. Serum antimüllerian hormone is associated with the number of oocytes matured in vitro and with primordial follicle density in candidates for fertility preservation. Fertil Steril. 2019;111(2):357–62.

    Article  CAS  PubMed  Google Scholar 

  47. Hart R. Optimizing the opportunity for female fertility preservation in a limited time-frame for patients with cancer using in vitro maturation and ovarian tissue cryopreservation. Fertil Steril. 2019;111(2):258–9.

    Article  PubMed  Google Scholar 

  48. Amorim CA, Van Langendonckt A, David A, Dolmans MM, Donnez J. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod. 2009;24:92–9.

    Article  CAS  PubMed  Google Scholar 

  49. Shikanov S, Xu M, Woodruff TK, Shea LD. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials. 2009;30:5476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27:1801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith RM, Shikanov A, Kniazeva E, Ramadurai D, Woodruff TK, Shea LD. Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng Part A. 2014;20:3021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rajabzadeh AR, Eimani H, Mohseni Koochesfahani H, Shahvardi AH, Fathi R. Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation. Cell J. 2015;17:145–52.

    PubMed  PubMed Central  Google Scholar 

  53. Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A, Camboni A, Van Langendonckt A, Donnez J. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction. 2007;134:253–62.

    Article  CAS  PubMed  Google Scholar 

  54. Boehler RM, Graham JG, Shea LD. Tissue engineering tools for modulation of the immune response. BioTechniques. 2011;51:239–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiu CL, Hecht V, Duong H, Wu B, Tawil B. Permeability of three-dimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations. Biores Open Access. 2012;1(97):134–40.

    Google Scholar 

  56. Luyckx V, et al. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res. 2013;6:83.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luyckx V, et al. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149–56.

    Article  PubMed  Google Scholar 

  58. Chiti MC, et al. Influence of follicle stage on artificial ovary outcome using fibrin as a matrix. Hum Reprod. 2016;31(2):427–35.

    CAS  PubMed  Google Scholar 

  59. Paulini F, et al. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online. 2016;33:425–32.

    Article  CAS  PubMed  Google Scholar 

  60. Yang ZY, Chian RC. Development of in vitro maturation techniques for clinical applications. Fertil Steril. 2017;108(4):577–84.

    Article  PubMed  Google Scholar 

  61. Chian RC, Xu CL, Huang JY, Ata B. Obstetric outcomes and congenital abnormalities in infants conceived with oocytes matured in vitro. Facts Views Vis Obgyn. 2014;6:15–8.

    PubMed  PubMed Central  Google Scholar 

  62. Soderstrom-Antilla V, Salokorpi T, Pihlaja M, Serenius-Sirve S, Suikkari AM. Obstetric and perinatal outcome and preliminary results of development of children born after in vitro maturation of oocytes. Hum Reprod. 2006;21:1508–13.

    Article  Google Scholar 

  63. Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110:885–91.

    Article  PubMed  Google Scholar 

  64. Fadini R, Mignini Renzini M, Guarnieri T, Dal Canto M, de Ponti E, Sutcliffe A, et al. Comparison of the obstetric and perinatal outcomes of children conceived from in vitro or in vivo matured oocytes in in vitro maturation treatments with births from conventional ICSI cycles. Hum Reprod. 2012;27:3601–8.

    Article  CAS  PubMed  Google Scholar 

  65. Roesner S, von Wolff M, Elsaesser M, Roesner K, Reuner G, Pietz J, et al. Two-year development of children conceived by IVM: a prospective controlled single-blinded study. Hum Reprod. 2017;32:1341–50.

    Article  CAS  PubMed  Google Scholar 

  66. Practice Committee of American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril. 2013;100(5):1214–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Buyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, T., Buyuk, E. (2020). Ovarian Cortical Tissue Biopsy and Freezing for Autotransplantation. In: Bukulmez, O. (eds) Diminished Ovarian Reserve and Assisted Reproductive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-23235-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23235-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23234-4

  • Online ISBN: 978-3-030-23235-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics