Skip to main content

Abstract

Female reproductive aging is a complex process that involves all organs of reproductive axis, from hypothalamus to the ovaries. Although life expectancy almost doubled during the last century, the reproductive life span remained relatively constant. Oocyte attrition leading to loss of ovarian function has been viewed as the hallmark of reproductive aging leading to menopause; however, recent evidence suggests both hypothalamus and pituitary may play an active role in reproductive senescence. Yet, the mechanisms governing reproductive senescence are largely unknown. This chapter focuses on the physiology of reproductive aging, both at the hypothalamic-pituitary and the ovarian level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arias E, Heron M, Xu J. United States life tables, 2014. Natl Vital Stat Rep. 2017;66(4):1–64.

    PubMed  Google Scholar 

  2. Shifren JL, Gass ML, Group NRfCCoMWW. The North American Menopause Society recommendations for clinical care of midlife women. Menopause. 2014;21(10):1038–62.

    Article  PubMed  Google Scholar 

  3. Nichols HB, Trentham-Dietz A, Hampton JM, Titus-Ernstoff L, Egan KM, Willett WC, et al. From menarche to menopause: trends among US women born from 1912 to 1969. Am J Epidemiol. 2006;164(10):1003–11.

    Article  PubMed  Google Scholar 

  4. Hall JE. Neuroendocrine changes with reproductive aging in women. Semin Reprod Med. 2007;25(5):344–51.

    Article  CAS  PubMed  Google Scholar 

  5. Downs JL, Wise PM. The role of the brain in female reproductive aging. Mol Cell Endocrinol. 2009;299(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  6. Martin JA, Hamilton BE, Osterman MJ, Driscoll AK, Mathews TJ. Births: final data for 2015. Natl Vital Stat Rep. 2017;66(1):1.

    PubMed  Google Scholar 

  7. Hodes-Wertz B, Druckenmiller S, Smith M, Noyes N. What do reproductive-age women who undergo oocyte cryopreservation think about the process as a means to preserve fertility? Fertil Steril. 2013;100(5):1343–9.

    Article  PubMed  Google Scholar 

  8. Heck KE, Schoendorf KC, Ventura SJ, Kiely JL. Delayed childbearing by education level in the United States, 1969-1994. Matern Child Health J. 1997;1(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hammarberg K, Clarke VE. Reasons for delaying childbearing – a survey of women aged over 35 years seeking assisted reproductive technology. Aust Fam Physician. 2005;34(3):187–8, 206.

    PubMed  Google Scholar 

  10. Centers for Disease Control and Prevention 2005-2014. Available from: https://www.cdc.gov/art/reports/archive.html.

  11. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2015;103(3):e9–17.

    Google Scholar 

  12. Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res. 1951;6:63–109.

    Google Scholar 

  13. Zuckerman S, Baker T. The development of the ovary and the process of oogenesis. Ovary. 1977;1:41–67.

    Google Scholar 

  14. Peters H. Migration of gonocytes into the mammalian gonad and their differentiation. Philos Trans R Soc Lond Ser B Biol Sci. 1970;259(828):91–101.

    Article  CAS  Google Scholar 

  15. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122(2):303–15.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–50.

    Article  CAS  Google Scholar 

  17. Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rulicke T, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18(1):137–49.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang D, Fouad H, Zoma WD, Salama SA, Wentz MJ, Al-Hendy A. Expression of stem and germ cell markers within nonfollicle structures in adult mouse ovary. Reprod Sci. 2008;15(2):139–46.

    Article  PubMed  CAS  Google Scholar 

  19. Ye H, Zheng T, Li W, Li X, Fu X, Huang Y, et al. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem. 2017;43(5):1917–25.

    Article  CAS  PubMed  Google Scholar 

  20. Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20(8):1451–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A, et al. Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int. 2013;2013:690415.

    PubMed  PubMed Central  Google Scholar 

  22. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santoro N. The menopausal transition. The American journal of medicine. 2005;118(Suppl 12B):8–13.

    Article  PubMed  Google Scholar 

  24. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7(10):1342–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708.

    Article  PubMed  Google Scholar 

  26. Wu JM, Zelinski MB, Ingram DK, Ottinger MA. Ovarian aging and menopause: current theories, hypotheses, and research models. Exp Biol Med (Maywood). 2005;230(11):818–28.

    Article  CAS  Google Scholar 

  27. Lenton EA, Landgren BM, Sexton L, Harper R. Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br J Obstet Gynaecol. 1984;91(7):681–4.

    Article  CAS  PubMed  Google Scholar 

  28. van Montfrans JM, Hoek A, van Hooff MH, de Koning CH, Tonch N, Lambalk CB. Predictive value of basal follicle-stimulating hormone concentrations in a general subfertility population. Fertil Steril. 2000;74(1):97–103.

    Article  PubMed  Google Scholar 

  29. van Rooij IA, Broekmans FJ, Scheffer GJ, Looman CW, Habbema JD, de Jong FH, et al. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil Steril. 2005;83(4):979–87.

    Article  PubMed  CAS  Google Scholar 

  30. Seifer DB, Lambert-Messerlian G, Hogan JW, Gardiner AC, Blazar AS, Berk CA. Day 3 serum inhibin-B is predictive of assisted reproductive technologies outcome. Fertil Steril. 1997;67(1):110–4.

    Article  CAS  PubMed  Google Scholar 

  31. Santoro N, Isaac B, Neal-Perry G, Adel T, Weingart L, Nussbaum A, et al. Impaired folliculogenesis and ovulation in older reproductive aged women. J Clin Endocrinol Metab. 2003;88(11):5502–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246–51 e1.

    Article  CAS  PubMed  Google Scholar 

  33. Sowers MR, Eyvazzadeh AD, McConnell D, Yosef M, Jannausch ML, Zhang D, et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab. 2008;93(9):3478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Rooij IA, Tonkelaar I, Broekmans FJ, Looman CW, Scheffer GJ, de Jong FH, et al. Anti-mullerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause. 2004;11(6 Pt 1):601–6.

    Article  PubMed  Google Scholar 

  35. Welt CK, McNicholl DJ, Taylor AE, Hall JE. Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab. 1999;84(1):105–11.

    CAS  PubMed  Google Scholar 

  36. Steiner AZ, Pritchard D, Stanczyk FZ, Kesner JS, Meadows JW, Herring AH, et al. Association between biomarkers of ovarian reserve and infertility among older women of reproductive age. JAMA. 2017;318(14):1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Majumder K, Gelbaya TA, Laing I, Nardo LG. The use of anti-Mullerian hormone and antral follicle count to predict the potential of oocytes and embryos. Eur J Obstet Gynecol Reprod Biol. 2010;150(2):166–70.

    Article  CAS  PubMed  Google Scholar 

  38. Blazar AS, Lambert-Messerlian G, Hackett R, Krotz S, Carson SA, Robins JC. Use of in-cycle antimullerian hormone levels to predict cycle outcome. Am J Obstet Gynecol. 2011;205(3):223.e1–5.

    Article  CAS  Google Scholar 

  39. Anckaert E, Smitz J, Schiettecatte J, Klein BM, Arce JC. The value of anti-Mullerian hormone measurement in the long GnRH agonist protocol: association with ovarian response and gonadotrophin-dose adjustments. Hum Reprod. 2012;27(6):1829–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kotanidis L, Nikolettos K, Petousis S, Asimakopoulos B, Chatzimitrou E, Kolios G, et al. The use of serum anti-Mullerian hormone (AMH) levels and antral follicle count (AFC) to predict the number of oocytes collected and availability of embryos for cryopreservation in IVF. J Endocrinol Investig. 2016;39(12):1459–64.

    Article  CAS  Google Scholar 

  41. van Disseldorp J, Lambalk CB, Kwee J, Looman CW, Eijkemans MJ, Fauser BC, et al. Comparison of inter- and intra-cycle variability of anti-Mullerian hormone and antral follicle counts. Hum Reprod. 2010;25(1):221–7.

    Article  PubMed  Google Scholar 

  42. Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil. 1987;81(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  43. Jayaprakasan K, Campbell B, Hopkisson J, Johnson I, Raine-Fenning N. A prospective, comparative analysis of anti-Mullerian hormone, inhibin-B, and three-dimensional ultrasound determinants of ovarian reserve in the prediction of poor response to controlled ovarian stimulation. Fertil Steril. 2010;93(3):855–64.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang JY, Cheung CK, Wang Y, Tsang BK. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front Biosci. 2003;8:d222–37.

    Article  CAS  PubMed  Google Scholar 

  45. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology. 1991;129(5):2799–801.

    Article  CAS  PubMed  Google Scholar 

  46. Regan SLP, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, et al. The effect of ovarian reserve and receptor signalling on granulosa cell apoptosis during human follicle development. Mol Cell Endocrinol. 2018;470:219–27.

    Article  CAS  PubMed  Google Scholar 

  47. Burger HG, Hale GE, Dennerstein L, Robertson DM. Cycle and hormone changes during perimenopause: the key role of ovarian function. Menopause. 2008;15(4 Pt 1):603–12.

    Article  PubMed  Google Scholar 

  48. Titus S, Li F, Stobezki R, Akula K, Unsal E, Jeong K, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):172ra21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ben-Aharon I, Levi M, Margel D, Yerushalmi R, Rizel S, Perry S, et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? Oncotarget. 2018;9(22):15931–41.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin W, Titus S, Moy F, Ginsburg ES, Oktay K. Ovarian aging in women with BRCA germline mutations. J Clin Endocrinol Metab. 2017;102(10):3839–47.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Al-Edani T, Assou S, Ferrieres A, Bringer Deutsch S, Gala A, Lecellier CH, et al. Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. Biomed Res Int. 2014;2014:964614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Goldmann JM, Seplyarskiy VB, Wong WSW, Vilboux T, Neerincx PB, Bodian DL, et al. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nat Genet. 2018;50(4):487–92.

    Article  CAS  PubMed  Google Scholar 

  53. Liang X, Ma J, Schatten H, Sun Q. Epigenetic changes associated with oocyte aging. Sci China Life Sci. 2012;55(8):670–6.

    Article  CAS  PubMed  Google Scholar 

  54. Yue M X, Fu X W, Zhou G B, et al. Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. J Assist Reprod Genet, 2012;29: 643–650.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bonomi M, Somigliana E, Cacciatore C, Busnelli M, Rossetti R, Bonetti S, et al. Blood cell mitochondrial DNA content and premature ovarian aging. PLoS One. 2012;7(8):e42423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Babayev E, Wang T, Szigeti-Buck K, Lowther K, Taylor HS, Horvath T, et al. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtDNA quantity. Maturitas. 2016;93:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang T, Zhang M, Jiang Z, Seli E. Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol. 2017;77(5):1–9.

    Google Scholar 

  58. Wang T, Babayev E, Jiang Z, Li G, Zhang M, Esencan E, et al. Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell. 2018;17:e12784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bentov Y, Yavorska T, Esfandiari N, Jurisicova A, Casper RF. The contribution of mitochondrial function to reproductive aging. J Assist Reprod Genet. 2011;28(9):773–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E, Yavorska T, et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell. 2015;14(5):887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kansaku K, Takeo S, Itami N, Kin A, Shirasuna K, Kuwayama T, et al. Maternal aging affects oocyte resilience to carbonyl cyanide-m-chlorophenylhydrazone -induced mitochondrial dysfunction in cows. PLoS One. 2017;12(11):e0188099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bentov Y, Casper RF. The aging oocyte – can mitochondrial function be improved? Fertil Steril. 2013;99(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Liu M, Ye X, Liu K, Huang J, Wang L, et al. Delay in oocyte aging in mice by the antioxidant N-acetyl-L-cysteine (NAC). Hum Reprod. 2012;27(5):1411–20.

    Article  CAS  PubMed  Google Scholar 

  64. Goud AP, Goud PT, Diamond MP, Gonik B, Abu-Soud HM. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med. 2008;44(7):1295–304.

    Article  CAS  PubMed  Google Scholar 

  65. Wang T, Gao YY, Chen L, Nie ZW, Cheng W, Liu X, et al. Melatonin prevents postovulatory oocyte aging and promotes subsequent embryonic development in the pig. Aging (Albany NY). 2017;9(6):1552–64.

    Article  CAS  Google Scholar 

  66. Bogliolo L, Murrone O, Di Emidio G, Piccinini M, Ariu F, Ledda S, et al. Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte. J Assist Reprod Genet. 2013;30(7):877–82.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Massasa E, Costa XS, Taylor HS. Failure of the stem cell niche rather than loss of oocyte stem cells in the aging ovary. Aging (Albany NY). 2010;2(1):1–2.

    Article  Google Scholar 

  68. Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction. 2015;149(1):R35–48.

    Article  PubMed  CAS  Google Scholar 

  69. Hosni W, Bastu E. Ovarian stem cells and aging. Climacteric. 2012;15(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  70. Li J, Zhou F, Zheng T, Pan Z, Liang X, Huang J, et al. Ovarian germline stem cells (OGSCs) and the hippo signaling pathway association with physiological and pathological ovarian aging in mice. Cell Physiol Biochem. 2015;36(5):1712–24.

    Article  CAS  PubMed  Google Scholar 

  71. Ding C, Li H, Wang Y, Wang F, Wu H, Chen R, et al. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics. Stem Cell Res Ther. 2017;8(1):173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Morin GB. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989;59(3):521–9.

    Article  CAS  PubMed  Google Scholar 

  73. Bayne S, Li H, Jones ME, Pinto AR, van Sinderen M, Drummond A, et al. Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo. Protein Cell. 2011;2(4):333–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valerio D, Luddi A, De Leo V, Labella D, Longobardi S, Piomboni P. SA1/SA2 cohesion proteins and SIRT1-NAD+ deacetylase modulate telomere homeostasis in cumulus cells and are eligible biomarkers of ovarian aging. Hum Reprod. 2018;33(5):887–94.

    Article  CAS  PubMed  Google Scholar 

  75. Li Q, Miao DQ, Zhou P, Wu YG, Gao D, Wei DL, et al. Glucose metabolism in mouse cumulus cells prevents oocyte aging by maintaining both energy supply and the intracellular redox potential. Biol Reprod. 2011;84(6):1111–8.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Fang L, Lu Z, Xiong J, Wu M, Shi L, et al. Are sirtuins markers of ovarian aging? Gene. 2016;575(2 Pt 3):680–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ma R, Zhang Y, Zhang L, Han J, Rui R. Sirt1 protects pig oocyte against in vitro aging. Anim Sci J. 2015;86(9):826–32.

    CAS  PubMed  Google Scholar 

  78. Mumusoglu S, Turan V, Uckan H, Suzer A, Sokmensuer LK, Bozdag G. The impact of a long-acting oral sphingosine-1-phosphate analogue on ovarian aging in a rat model. Reprod Sci. 2018;25(9):1330–5.

    Article  CAS  PubMed  Google Scholar 

  79. Sharara FI, Beatse SN, Leonardi MR, Navot D, Scott RT Jr. Cigarette smoking accelerates the development of diminished ovarian reserve as evidenced by the clomiphene citrate challenge test. Fertil Steril. 1994;62(2):257–62.

    Article  CAS  PubMed  Google Scholar 

  80. De Bruin ML, Van Dulmen-den Broeder E, Van den Berg MH, Lambalk CB. Fertility in female childhood cancer survivors. Endocr Dev. 2009;15:135–58.

    Article  PubMed  Google Scholar 

  81. Vermeulen A. Environment, human reproduction, menopause, and andropause. Environ Health Perspect. 1993;101(Suppl 2):91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Thomas-Teinturier C, Allodji RS, Svetlova E, Frey MA, Oberlin O, Millischer AE, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2015;30(6):1437–46.

    Article  CAS  PubMed  Google Scholar 

  83. Marder W, McCune WJ, Wang L, Wing JJ, Fisseha S, McConnell DS, et al. Adjunctive GnRH-a treatment attenuates depletion of ovarian reserve associated with cyclophosphamide therapy in premenopausal SLE patients. Gynecol Endocrinol. 2012;28(8):624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoyer PB, Cannady EA, Kroeger NA, Sipes IG. Mechanisms of ovotoxicity induced by environmental chemicals: 4-vinylcyclohexene diepoxide as a model chemical. Adv Exp Med Biol. 2001;500:73–81.

    Article  CAS  PubMed  Google Scholar 

  85. Roosa KA, Mukai M, Place NJ. 4-Vinylcyclohexene diepoxide reduces fertility in female Siberian hamsters when treated during their reproductively active and quiescent states. Reprod Toxicol. 2015;51:40–6.

    Article  CAS  PubMed  Google Scholar 

  86. Hsu SY, Lai RJ, Finegold M, Hsueh AJ. Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology. 1996;137(11):4837–43.

    Article  CAS  PubMed  Google Scholar 

  87. Kappeler CJ, Hoyer PB. 4-vinylcyclohexene diepoxide: a model chemical for ovotoxicity. Syst Biol Reprod Med. 2012;58(1):57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holehan AM, Merry BJ. Lifetime breeding studies in fully fed and dietary restricted female CFY Sprague-Dawley rats. 1. Effect of age, housing conditions and diet on fecundity. Mech Ageing Dev. 1985;33(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  89. Shi LY, Luo AY, Tian Y, Lai ZW, Zhang JJ, Wang SX. Protective effects of caloric restriction on ovarian function. Zhonghua Fu Chan Ke Za Zhi. 2013;48(10):745–9.

    PubMed  Google Scholar 

  90. Tilly JL, Sinclair DA. Germline energetics, aging, and female infertility. Cell Metab. 2013;17(6):838–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cordeiro FB, Montani DA, Pilau EJ, Gozzo FC, Fraietta R, Turco EGL. Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J Assist Reprod Genet. 2018;35(8):1385–93.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Miao YL, Sun QY, Zhang X, Zhao JG, Zhao MT, Spate L, et al. Centrosome abnormalities during porcine oocyte aging. Environ Mol Mutagen. 2009;50(8):666–71.

    Article  CAS  PubMed  Google Scholar 

  93. Jiang GJ, Wang K, Miao DQ, Guo L, Hou Y, Schatten H, et al. Protein profile changes during porcine oocyte aging and effects of caffeine on protein expression patterns. PLoS One. 2011;6(12):e28996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang X, Liu X, Chen L, Wu DY, Nie ZW, Gao YY, et al. Caffeine delays oocyte aging and maintains the quality of aged oocytes safely in mouse. Oncotarget. 2017;8(13):20602–11.

    PubMed  PubMed Central  Google Scholar 

  95. Wilcox A, Weinberg C, Baird D. Caffeinated beverages and decreased fertility. Lancet. 1988;332(8626):1453–6.

    Article  Google Scholar 

  96. Hatch EE, Bracken MB. Association of delayed conception with caffeine consumption. Am J Epidemiol. 1993;138(12):1082–92.

    Article  CAS  PubMed  Google Scholar 

  97. IS L, Jensen A, Juul KE, Kesmodel US, Frederiksen K, Kjaer SK, et al. Coffee, tea and caffeine consumption and risk of primary infertility in women: a Danish cohort study. Acta Obstet Gynecol Scand. 2018;97(5):570–6.

    Article  CAS  Google Scholar 

  98. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Caffeinated and alcoholic beverage intake in relation to ovulatory disorder infertility. Epidemiology. 2009;20(3):374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Olsen J. Cigarette smoking, tea and coffee drinking, and subfecundity. Am J Epidemiol. 1991;133(7):734–9.

    Article  CAS  PubMed  Google Scholar 

  100. Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol. 2018;218(4):379–89.

    Article  PubMed  Google Scholar 

  101. Ricci E, Noli S, Cipriani S, La Vecchia I, Chiaffarino F, Ferrari S, et al. Maternal and paternal caffeine intake and ART outcomes in couples referring to an Italian fertility clinic: a prospective cohort. Nutrients. 2018;17(8):1–9.

    Google Scholar 

  102. Selby CP, Sancar A. Molecular mechanisms of DNA repair inhibition by caffeine. Proc Natl Acad Sci U S A. 1990;87(9):3522–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen LW, Fitzgerald R, Murrin CM, Mehegan J, Kelleher CC, Phillips CM, et al. Associations of maternal caffeine intake with birth outcomes: results from the Lifeways Cross Generation Cohort Study. Am J Clin Nutr. 2018;108(6):1301–8.

    Article  PubMed  Google Scholar 

  104. Shen M, Qi C, Kuang YP, Yang Y, Lyu QF, Long H, et al. Observation of the influences of diosgenin on aging ovarian reserve and function in a mouse model. Eur J Med Res. 2017;22(1):42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Schneider A, Matkovich SJ, Victoria B, Spinel L, Bartke A, Golusinski P, et al. Changes of ovarian microRNA profile in long-living Ames Dwarf mice during aging. PLoS One. 2017;12(1):e0169213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Battaglia R, Vento ME, Ragusa M, Barbagallo D, La Ferlita A, Di Emidio G, et al. MicroRNAs are stored in human MII oocyte and their expression profile changes in reproductive aging. Biol Reprod. 2016;95(6):131.

    Article  PubMed  CAS  Google Scholar 

  107. Lovasco LA, Seymour KA, Zafra K, O'Brien CW, Schorl C, Freiman RN. Accelerated ovarian aging in the absence of the transcription regulator TAF4B in mice. Biol Reprod. 2010;82(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  108. Smith ER, Yeasky T, Wei JQ, Miki RA, Cai KQ, Smedberg JL, et al. White spotting variant mouse as an experimental model for ovarian aging and menopausal biology. Menopause. 2012;19(5):588–96.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chun SY, Billig H, Tilly JL, Furuta I, Tsafriri A, Hsueh AJ. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology. 1994;135(5):1845–53.

    Article  CAS  PubMed  Google Scholar 

  110. Bartke A, Chandrashekar V, Dominici F, Turyn D, Kinney B, Steger R, et al. Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology. 2003;4(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  111. Wilshire GB, Loughlin JS, Brown JR, Adel TE, Santoro N. Diminished function of the somatotropic axis in older reproductive-aged women. J Clin Endocrinol Metab. 1995;80(2):608–13.

    CAS  PubMed  Google Scholar 

  112. Todd BJ, Merhi ZO, Shu J, Etgen AM, Neal-Perry GS. Hypothalamic insulin-like growth factor-I receptors are necessary for hormone-dependent luteinizing hormone surges: implications for female reproductive aging. Endocrinology. 2010;151(3):1356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, et al. Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol. 1996;10(7):903–18.

    CAS  PubMed  Google Scholar 

  114. Billig H, Furuta I, Hsueh AJ. Gonadotropin-releasing hormone directly induces apoptotic cell death in the rat ovary: biochemical and in situ detection of deoxyribonucleic acid fragmentation in granulosa cells. Endocrinology. 1994;134(1):245–52.

    Article  CAS  PubMed  Google Scholar 

  115. Yang Y, Balla A, Danilovich N, Sairam MR. Developmental and molecular aberrations associated with deterioration of oogenesis during complete or partial follicle-stimulating hormone receptor deficiency in mice. Biol Reprod. 2003;69(4):1294–302.

    Article  CAS  PubMed  Google Scholar 

  116. Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A. 2004;101(9):2975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu Z, Castrillon DH, Zhou W, Richards JS. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol Endocrinol. 2013;27(2):238–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brenkman AB, Burgering BM. FoxO3a eggs on fertility and aging. Trends Mol Med. 2003;9(11):464–7.

    Article  CAS  PubMed  Google Scholar 

  119. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8.

    Article  CAS  PubMed  Google Scholar 

  120. Krohn PL. Ovarian homotransplantation. Ann N Y Acad Sci. 1955;59(3):443–7.

    Article  CAS  PubMed  Google Scholar 

  121. Huang HH, Meites J. Reproductive capacity of aging female rats. Neuroendocrinology. 1975;17(4):289–95.

    Article  CAS  PubMed  Google Scholar 

  122. Reame NE, Wyman TL, Phillips DJ, de Kretser DM, Padmanabhan V. Net increase in stimulatory input resulting from a decrease in inhibin B and an increase in activin A may contribute in part to the rise in follicular phase follicle-stimulating hormone of aging cycling women. J Clin Endocrinol Metab. 1998;83(9):3302–7.

    CAS  PubMed  Google Scholar 

  123. Santoro N, Adel T, Skurnick JH. Decreased inhibin tone and increased activin A secretion characterize reproductive aging in women. Fertil Steril. 1999;71(4):658–62.

    Article  CAS  PubMed  Google Scholar 

  124. Klein NA, Battaglia DE, Woodruff TK, Padmanabhan V, Giudice LC, Bremner WJ, et al. Ovarian follicular concentrations of activin, follistatin, inhibin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-2 (IGFBP-2), IGFBP-3, and vascular endothelial growth factor in spontaneous menstrual cycles of normal women of advanced reproductive age. J Clin Endocrinol Metab. 2000;85(12):4520–5.

    CAS  PubMed  Google Scholar 

  125. Muttukrishna S, Fowler PA, Groome NP, Mitchell GG, Robertson WR, Knight PG. Serum concentrations of dimeric inhibin during the spontaneous human menstrual cycle and after treatment with exogenous gonadotrophin. Hum Reprod. 1994;9(9):1634–42.

    Article  CAS  PubMed  Google Scholar 

  126. Baccarelli A, Morpurgo PS, Corsi A, Vaghi I, Fanelli M, Cremonesi G, et al. Activin A serum levels and aging of the pituitary-gonadal axis: a cross-sectional study in middle-aged and elderly healthy subjects. Exp Gerontol. 2001;36(8):1403–12.

    Article  CAS  PubMed  Google Scholar 

  127. Klein NA, Battaglia DE, Fujimoto VY, Davis GS, Bremner WJ, Soules MR. Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women. J Clin Endocrinol Metab. 1996;81(3):1038–45.

    CAS  PubMed  Google Scholar 

  128. Landgren BM, Collins A, Csemiczky G, Burger HG, Baksheev L, Robertson DM. Menopause transition: annual changes in serum hormonal patterns over the menstrual cycle in women during a nine-year period prior to menopause. J Clin Endocrinol Metab. 2004;89(6):2763–9.

    Article  CAS  PubMed  Google Scholar 

  129. Hansen KR, Thyer AC, Sluss PM, Bremner WJ, Soules MR, Klein NA. Reproductive ageing and ovarian function: is the early follicular phase FSH rise necessary to maintain adequate secretory function in older ovulatory women? Hum Reprod. 2005;20(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  130. Welt CK, Jimenez Y, Sluss PM, Smith PC, Hall JE. Control of estradiol secretion in reproductive ageing. Hum Reprod. 2006;21(8):2189–93.

    Article  CAS  PubMed  Google Scholar 

  131. Lloyd JM, Hoffman GE, Wise PM. Decline in immediate early gene expression in gonadotropin-releasing hormone neurons during proestrus in regularly cycling, middle-aged rats. Endocrinology. 1994;134(4):1800–5.

    Article  CAS  PubMed  Google Scholar 

  132. Gore AC, Oung T, Yung S, Flagg RA, Woller MJ. Neuroendocrine mechanisms for reproductive senescence in the female rat: gonadotropin-releasing hormone neurons. Endocrine. 2000;13(3):315–23.

    Article  CAS  PubMed  Google Scholar 

  133. Hoffman GE, Finch CE. LHRH neurons in the female C57BL/6J mouse brain during reproductive aging: no loss up to middle age. Neurobiol Aging. 1986;7(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  134. Zuo Z, Mahesh VB, Zamorano PL, Brann DW. Decreased gonadotropin-releasing hormone neurosecretory response to glutamate agonists in middle-aged female rats on proestrus afternoon: a possible role in reproductive aging? Endocrinology. 1996;137(6):2334–8.

    Article  CAS  PubMed  Google Scholar 

  135. Rubin BS. Naloxone stimulates comparable release of luteinizing hormone-releasing hormone from tissue fragments from ovariectomized, estrogen-treated young and middle-aged female rats. Brain Res. 1993;601(1–2):246–54.

    Article  CAS  PubMed  Google Scholar 

  136. Le WW, Wise PM, Murphy AZ, Coolen LM, Hoffman GE. Parallel declines in Fos activation of the medial anteroventral periventricular nucleus and LHRH neurons in middle-aged rats. Endocrinology. 2001;142(11):4976–82.

    Article  CAS  PubMed  Google Scholar 

  137. Krajnak K, Rosewell KL, Wise PM. Fos-induction in gonadotropin-releasing hormone neurons receiving vasoactive intestinal polypeptide innervation is reduced in middle-aged female rats. Biol Reprod. 2001;64(4):1160–4.

    Article  CAS  PubMed  Google Scholar 

  138. Brann DW, Zamorano PL, De Sevilla L, Mahesh VB. Expression of glutamate receptor subunits in the hypothalamus of the female rat during the afternoon of the proestrous luteinizing hormone surge and effects of antiprogestin treatment and aging. Neuroendocrinology. 2005;81(2):120–8.

    Article  CAS  PubMed  Google Scholar 

  139. Neal-Perry GS, Zeevalk GD, Santoro NF, Etgen AM. Attenuation of preoptic area glutamate release correlates with reduced luteinizing hormone secretion in middle-aged female rats. Endocrinology. 2005;146(10):4331–9.

    Article  CAS  PubMed  Google Scholar 

  140. Gore AC, Yeung G, Morrison JH, Oung T. Neuroendocrine aging in the female rat: the changing relationship of hypothalamic gonadotropin-releasing hormone neurons and N-methyl-D-aspartate receptors. Endocrinology. 2000;141(12):4757–67.

    Article  CAS  PubMed  Google Scholar 

  141. Grove-Strawser D, Jimenez-Linan M, Rubin BS. Middle-aged female rats lack the dynamic changes in GAD(67) mRNA levels observed in young females on the day of a luteinising hormone surge. J Neuroendocrinol. 2007;19(9):708–16.

    Article  CAS  PubMed  Google Scholar 

  142. Khan M, De Sevilla L, Mahesh VB, Brann DW. Enhanced glutamatergic and decreased GABAergic synaptic appositions to GnRH neurons on proestrus in the rat: modulatory effect of aging. PLoS One. 2010;5(4):e10172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Mohankumar PS, Thyagarajan S, Quadri SK. Tyrosine hydroxylase and DOPA decarboxylase activities in the medical preoptic area and arcuate nucleus during the estrous cycle: effects of aging. Brain Res Bull. 1997;42(4):265–71.

    Article  CAS  PubMed  Google Scholar 

  144. Szawka RE, Poletini MO, Leite CM, Bernuci MP, Kalil B, Mendonca LB, et al. Release of norepinephrine in the preoptic area activates anteroventral periventricular nucleus neurons and stimulates the surge of luteinizing hormone. Endocrinology. 2013;154(1):363–74.

    Article  CAS  PubMed  Google Scholar 

  145. Ferreira LB, de Nicola AC, Anselmo-Franci JA, Dornelles RC. Activity of neurons in the preoptic area and their participation in reproductive senescence: preliminary findings. Exp Gerontol. 2015;72:157–61.

    Article  PubMed  Google Scholar 

  146. Herbison AE, Pape JR. New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrinol. 2001;22(4):292–308.

    Article  CAS  PubMed  Google Scholar 

  147. Wilson ME, Rosewell KL, Kashon ML, Shughrue PJ, Merchenthaler I, Wise PM. Age differentially influences estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) gene expression in specific regions of the rat brain. Mech Ageing Dev. 2002;123(6):593–601.

    Article  CAS  PubMed  Google Scholar 

  148. Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology. 2010;151(8):3479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Iwata K, Ikehara M, Kunimura Y, Ozawa H. Interactions between kisspeptin neurons and hypothalamic tuberoinfundibular dopaminergic neurons in aged female rats. Acta Histochem Cytochem. 2016;49(6):191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ishii MN, Matsumoto K, Matsui H, Seki N, Matsumoto H, Ishikawa K, et al. Reduced responsiveness of kisspeptin neurons to estrogenic positive feedback associated with age-related disappearance of LH surge in middle-age female rats. Gen Comp Endocrinol. 2013;193:121–9.

    Article  CAS  PubMed  Google Scholar 

  151. Ukena K, Tsutsui K. Distribution of novel RFamide-related peptide-like immunoreactivity in the mouse central nervous system. Neurosci Lett. 2001;300(3):153–6.

    Article  CAS  PubMed  Google Scholar 

  152. Ukena K, Iwakoshi E, Minakata H, Tsutsui K. A novel rat hypothalamic RFamide-related peptide identified by immunoaffinity chromatography and mass spectrometry. FEBS Lett. 2002;512(1–3):255–8.

    Article  CAS  PubMed  Google Scholar 

  153. Kriegsfeld LJ, Gibson EM, Williams WP 3rd, Zhao S, Mason AO, Bentley GE, et al. The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J Neuroendocrinol. 2010;22(7):692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Geraghty AC, Muroy SE, Kriegsfeld LJ, Bentley GE, Kaufer D. The role of RFamide-related peptide-3 in age-related reproductive decline in female rats. Front Endocrinol (Lausanne). 2016;7:71.

    Article  Google Scholar 

  155. DePaolo LV. Age-associated increases in serum follicle-stimulating hormone levels on estrus are accompanied by a reduction in the ovarian secretion of inhibin. Exp Aging Res. 1987;13(1–2):3–7.

    Article  CAS  PubMed  Google Scholar 

  156. van Look PF, Lothian H, Hunter WM, Michie EA, Baird DT. Hypothalamic-pituitary-ovarian function in perimenopausal women. Clin Endocrinol. 1977;7(1):13–31.

    Article  Google Scholar 

  157. Fujimoto VY, Spencer SJ, Rabinovici J, Plosker S, Jaffe RB. Endogenous catecholamines augment the inhibitory effect of opioids on luteinizing hormone secretion during the midluteal phase. Am J Obstet Gynecol. 1993;169(6):1524–30.

    Article  CAS  PubMed  Google Scholar 

  158. Shaw ND, Srouji SS, Histed SN, McCurnin KE, Hall JE. Aging attenuates the pituitary response to gonadotropin-releasing hormone. J Clin Endocrinol Metab. 2009;94(9):3259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shideler SE, DeVane GW, Kalra PS, Benirschke K, Lasley BL. Ovarian-pituitary hormone interactions during the perimenopause. Maturitas. 1989;11(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  160. Santoro N, Brown JR, Adel T, Skurnick JH. Characterization of reproductive hormonal dynamics in the perimenopause. J Clin Endocrinol Metab. 1996;81(4):1495–501.

    CAS  PubMed  Google Scholar 

  161. Gore AC, Windsor-Engnell BM, Terasawa E. Menopausal increases in pulsatile gonadotropin-releasing hormone release in a nonhuman primate (Macaca mulatta). Endocrinology. 2004;145(10):4653–9.

    Article  CAS  PubMed  Google Scholar 

  162. Rossmanith WG. Gonadotropin secretion during aging in women: review article. Exp Gerontol. 1995;30(3–4):369–81.

    Article  CAS  PubMed  Google Scholar 

  163. Hall JE, Lavoie HB, Marsh EE, Martin KA. Decrease in gonadotropin-releasing hormone (GnRH) pulse frequency with aging in postmenopausal women. J Clin Endocrinol Metab. 2000;85(5):1794–800.

    CAS  PubMed  Google Scholar 

  164. Weiss G, Skurnick JH, Goldsmith LT, Santoro NF, Park SJ. Menopause and hypothalamic-pituitary sensitivity to estrogen. JAMA. 2004;292(24):2991–6.

    Article  CAS  PubMed  Google Scholar 

  165. Rance NE. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides. 2009;30(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  166. Kim W, Jessen HM, Auger AP, Terasawa E. Postmenopausal increase in KiSS-1, GPR54, and luteinizing hormone releasing hormone (LHRH-1) mRNA in the basal hypothalamus of female rhesus monkeys. Peptides. 2009;30(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  167. Eghlidi DH, Haley GE, Noriega NC, Kohama SG, Urbanski HF. Influence of age and 17beta-estradiol on kisspeptin, neurokinin B, and prodynorphin gene expression in the arcuate-median eminence of female rhesus macaques. Endocrinology. 2010;151(8):3783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Eghlidi DH, Urbanski HF. Effects of age and estradiol on gene expression in the rhesus macaque hypothalamus. Neuroendocrinology. 2015;101(3):236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rubin BS, King JC, Bridges RS. Immunoreactive forms of luteinizing hormone-releasing hormone in the brains of aging rats exhibiting persistent vaginal estrus. Biol Reprod. 1984;31(2):343–51.

    Article  CAS  PubMed  Google Scholar 

  170. Miller BH, Gore AC. N-methyl-D-aspartate receptor subunit expression in GnRH neurons changes during reproductive senescence in the female rat. Endocrinology. 2002;143(9):3568–74.

    Article  CAS  PubMed  Google Scholar 

  171. Merchenthaler I, Lengvari I, Horvath J, Setalo G. Immunohistochemical study of the LHRH-synthesizing neuron system of aged female rats. Cell Tissue Res. 1980;209(3):499–503.

    Article  CAS  PubMed  Google Scholar 

  172. Witkin JW. Luteinizing hormone releasing hormone (LHRH) neurons in aging female rhesus macaques. Neurobiol Aging. 1986;7(4):259–63.

    Article  CAS  PubMed  Google Scholar 

  173. Miller MM, Joshi D, Billiar RB, Nelson JF. Loss of LH-RH neurons in the rostral forebrain of old female C57BL/6J mice. Neurobiol Aging. 1990;11(3):217–21.

    Article  CAS  PubMed  Google Scholar 

  174. Funabashi T, Kimura F. The number of luteinizing hormone-releasing hormone immunoreactive neurons is significantly decreased in the forebrain of old-aged female rats. Neurosci Lett. 1995;189(2):85–8.

    Article  CAS  PubMed  Google Scholar 

  175. Cashion AB, Smith MJ, Wise PM. The morphometry of astrocytes in the rostral preoptic area exhibits a diurnal rhythm on proestrus: relationship to the luteinizing hormone surge and effects of age. Endocrinology. 2003;144(1):274–80.

    Article  CAS  PubMed  Google Scholar 

  176. Akmayev IG, Fidelina OV. Tanycytes and their relation to the hypophyseal gonadotrophic function. Brain Res. 1981;210(1–2):253–60.

    Article  CAS  PubMed  Google Scholar 

  177. Brawer JR, Walsh RJ. Response of tanycytes to aging in the median eminence of the rat. Am J Anat. 1982;163(3):247–56.

    Article  CAS  PubMed  Google Scholar 

  178. Zoli M, Ferraguti F, Frasoldati A, Biagini G, Agnati LF. Age-related alterations in tanycytes of the mediobasal hypothalamus of the male rat. Neurobiol Aging. 1995;16(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  179. Yin W, Gore AC. The hypothalamic median eminence and its role in reproductive aging. Ann N Y Acad Sci. 2010;1204:113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Soga T, Kitahashi T, Clarke IJ, Parhar IS. Gonadotropin-inhibitory hormone promoter-driven enhanced green fluorescent protein expression decreases during aging in female rats. Endocrinology. 2014;155(5):1944–55.

    Article  PubMed  CAS  Google Scholar 

  181. Romero MT, Silverman AJ, Wise PM, Witkin JW. Ultrastructural changes in gonadotropin-releasing hormone neurons as a function of age and ovariectomy in rats. Neuroscience. 1994;58(1):217–25.

    Article  CAS  PubMed  Google Scholar 

  182. Hoffman GE, Sladek JR Jr. Age-related changes in dopamine, LHRH and somatostatin in the rat hypothalamus. Neurobiol Aging. 1980;1(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  183. Bestetti GE, Reymond MJ, Blanc F, Boujon CE, Furrer B, Rossi GL. Functional and morphological changes in the hypothalamo-pituitary-gonadal axis of aged female rats. Biol Reprod. 1991;45(2):221–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Buyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kucherov, A., Buyuk, E. (2020). Ovarian and Hypothalamic Aging. In: Bukulmez, O. (eds) Diminished Ovarian Reserve and Assisted Reproductive Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-23235-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23235-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23234-4

  • Online ISBN: 978-3-030-23235-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics