Skip to main content

Deep Knowledge Tracing with Side Information

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11626))

Abstract

Monitoring student knowledge states or skill acquisition levels known as knowledge tracing, is a fundamental part of intelligent tutoring systems. Despite its inherent challenges, recent deep neural networks based knowledge tracing models have achieved great success, which is largely from models’ ability to learn sequential dependencies of questions in student exercise data. However, in addition to sequential information, questions inherently exhibit side relations, which can enrich our understandings about student knowledge states and has great potentials to advance knowledge tracing. Thus, in this paper, we exploit side relations to improve knowledge tracing and design a novel framework DTKS. The experimental results on real education data validate the effectiveness of the proposed framework and demonstrate the importance of side information in knowledge tracing.

Z. Wang and X. Feng—Work was done when the authors did internship in TAL AI Lab.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_44

    Chapter  Google Scholar 

  2. Baker, R.S.J., Pardos, Z.A., Gowda, S.M., Nooraei, B.B., Heffernan, N.T.: Ensembling predictions of student knowledge within intelligent tutoring systems. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 13–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_2

    Chapter  Google Scholar 

  3. Bassett, D.S., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamicreconfiguration of human brain networks during learning. PNAS 108(18), 7641–7646 (2011)

    Article  Google Scholar 

  4. Caine, R.N., Caine, G.: Understanding a brain-based approach to learning and teaching. Educ. Leadersh. 48(2), 66–70 (1990)

    Google Scholar 

  5. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17

    Chapter  Google Scholar 

  6. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  7. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition ofprocedural knowledge. User Model. User-Adap. Inter. 278(4), 4–253 (1994)

    Google Scholar 

  8. Felder, R.M., Silverman, L.K., et al.: Learning and teaching styles in engineering education. Eng. Educ. 78(7), 674–681 (1988)

    Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD (2016)

    Google Scholar 

  10. Hilgard, E.R.: Theories of learning (1948)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Piech, C., et al.: Deep knowledge tracing. In: NIPS (2015)

    Google Scholar 

  13. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW (2015)

    Google Scholar 

  14. Wang, L., Sy, A., Liu, L., Piech, C.: Deep knowledge tracing on programming exercises. In: L@S (2017)

    Google Scholar 

  15. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18

    Chapter  Google Scholar 

  16. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: WWW (2017)

    Google Scholar 

Download references

Acknowledgements

Zhiwei Wang and Jiliang Tang are supported by the National Science Foundation (NSF) under grant numbers IIS-1714741, IIS-1715940, IIS-1845081 and CNS-1815636, and a grant from Criteo Faculty Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zitao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Feng, X., Tang, J., Huang, G.Y., Liu, Z. (2019). Deep Knowledge Tracing with Side Information. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11626. Springer, Cham. https://doi.org/10.1007/978-3-030-23207-8_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23207-8_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23206-1

  • Online ISBN: 978-3-030-23207-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics