Advertisement

Designing for Complementarity: Teacher and Student Needs for Orchestration Support in AI-Enhanced Classrooms

  • Kenneth HolsteinEmail author
  • Bruce M. McLaren
  • Vincent Aleven
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11625)

Abstract

As artificial intelligence (AI) increasingly enters K-12 classrooms, what do teachers and students see as the roles of human versus AI instruction, and how might educational AI (AIED) systems best be designed to support these complementary roles? We explore these questions through participatory design and needs validation studies with K-12 teachers and students. Using human-centered design methods rarely employed in AIED research, this work builds on prior findings to contribute: (1) an analysis of teacher and student feedback on 24 design concepts for systems that integrate human and AI instruction; and (2) participatory speed dating (PSD): a new variant of the speed dating design method, involving iterative concept generation and evaluation with multiple stakeholders. Using PSD, we found that teachers desire greater real-time support from AI tutors in identifying when students need human help, in evaluating the impacts of their own help-giving, and in managing student motivation. Meanwhile, students desire better mechanisms to signal help-need during class without losing face to peers, to receive emotional support from human rather than AI tutors, and to have greater agency over how their personal analytics are used. This work provides tools and insights to guide the design of more effective human–AI partnerships for K-12 education.

Keywords

Design Classroom orchestration Human-AI interaction 

Notes

Acknowledgements

This work was supported by IES Grants R305A180301 and R305B150008. The opinions expressed are those of the authors and do not represent the views of IES or the U.S. ED. Special thanks to all participating teachers and students.

References

  1. 1.
    Alavi, H.S., Dillenbourg, P.: An ambient awareness tool for supporting supervised collaborative problem solving. IEEE Trans. Learn. Technol. 5(3), 264–274 (2012)Google Scholar
  2. 2.
    Aleven, V., Roll, I., McLaren, B.M., Koedinger, K.R.: Help helps, but only so much: research on help seeking with intelligent tutoring systems. Int. J. Artif. Intell. Educ. 26(1), 205–223 (2016)Google Scholar
  3. 3.
    Amershi, S., et al.: Guidelines for human-AI interaction. ACM, May 2019. https://www.microsoft.com/en-us/research/publication/guidelines-for-human-ai-interaction/
  4. 4.
    An, P., Bakker, S., Ordanovski, S., Taconis, R., Eggen, B.: Classbeacons: designing distributed visualization of teachers-physical proximity in the classroom. In: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 357–367. ACM (2018)Google Scholar
  5. 5.
    Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., Koedinger, K.: Why students engage in “gaming the system” behavior in interactive learning environments. J. Interact. Learn. Res. 19(2), 185–224 (2008)Google Scholar
  6. 6.
    Baker, R.S.: Stupid tutoring systems, intelligent humans. Int. J. Artif. Intell. Educ. 26(2), 600–614 (2016)MathSciNetGoogle Scholar
  7. 7.
    Beck, J.E., Gong, Y.: Wheel-spinning: students who fail to master a skill. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 431–440. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39112-5_44Google Scholar
  8. 8.
    Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Elsevier, San Francisco (1997)Google Scholar
  9. 9.
    Broderick, Z., O’Connor, C., Mulcahy, C., Heffernan, N., Heffernan, C.: Increasing parent engagement in student learning using an intelligent tutoring system. J. Interact. Learn. Res. 22(4), 523–550 (2011)Google Scholar
  10. 10.
    Bulger, M.: Personalized learning: the conversations we’re not having. Data Soc. 22 (2016)Google Scholar
  11. 11.
    Bull, S., Kay, J.: Smili: a framework for interfaces to learning data in open learner models, learning analytics and related fields. Int. J. Artif. Intell. Educ. 26(1), 293–331 (2016)Google Scholar
  12. 12.
    Davidoff, S., Lee, M.K., Dey, A.K., Zimmerman, J.: Rapidly exploring application design through speed dating. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 429–446. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74853-3_25Google Scholar
  13. 13.
    Dillahunt, T.R., Lam, J., Lu, A., Wheeler, E.: Designing future employment applications for underserved job seekers: a speed dating study. In: Proceedings of the 2018 Designing Interactive Systems Conference, pp. 33–44. ACM (2018)Google Scholar
  14. 14.
    Dillenbourg, P.: Design for classroom orchestration. Comput. Educ. 69, 485–492 (2013)Google Scholar
  15. 15.
    Dillenbourg, P., Prieto, L.P., Olsen, J.K.: Classroom orchestration (2018)Google Scholar
  16. 16.
    D’Mello, S., Picard, R.W., Graesser, A.: Toward an affect-sensitive autotutor. IEEE Intell. Syst. 22(4), 53–61 (2007)Google Scholar
  17. 17.
    Dove, G., Halskov, K., Forlizzi, J., Zimmerman, J.: UX design innovation: challenges for working with machine learning as a design material. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 278–288. ACM (2017)Google Scholar
  18. 18.
    Dow, S.P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L., Klemmer, S.R.: Parallel prototyping leads to better design results, more divergence, and increased self-efficacy. ACM Trans. Comput. Hum. Interact. (TOCHI) 17(4), 18 (2010)Google Scholar
  19. 19.
    Echeverria, V., Martinez-Maldonado, R., Power, T., Hayes, C., Shum, S.B.: Where is the nurse? towards automatically visualising meaningful team movement in healthcare education. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 74–78. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93846-2_14Google Scholar
  20. 20.
    Feng, M., Heffernan, N.T.: Informing teachers live about student learning: reporting in the assistment system. Technol. Instr. Cogn. Learn. 3(1/2), 63 (2006)Google Scholar
  21. 21.
    Friedman, B.: Value-sensitive design. Interactions 3(6), 16–23 (1996)MathSciNetGoogle Scholar
  22. 22.
    Google: Google slides (2019). http://slides.google.com
  23. 23.
    Hagerty, G., Smith, S.: Using the web-based interactive software aleks to enhance college algebra. Math. Comput. Educ. 39(3) (2005)Google Scholar
  24. 24.
    Hanington, B., Martin, B.: Universal Methods of Design: 100 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions. Rockport Publishers, Beverly (2012)Google Scholar
  25. 25.
    Heer, J.: Agency plus automation: designing artificial intelligence into interactive systems. Proc. Nat. Acad. Sci. 116(6), 1844–1850 (2019).  https://doi.org/10.1073/pnas.1807184115, https://www.pnas.org/content/early/2019/01/29/1807184115Google Scholar
  26. 26.
    Holstein, K., Hong, G., Tegene, M., McLaren, B.M., Aleven, V.: The classroom as a dashboard: co-designing wearable cognitive augmentation for k-12 teachers. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, pp. 79–88. ACM (2018)Google Scholar
  27. 27.
    Holstein, K., McLaren, B.M., Aleven, V.: Intelligent tutors as teachers’ aides: exploring teacher needs for real-time analytics in blended classrooms. In: Proceedings of the Seventh International Learning Analytics & Knowledge Conference, pp. 257–266. ACM (2017)Google Scholar
  28. 28.
    Holstein, K., McLaren, B.M., Aleven, V.: Informing the design of teacher awareness tools through causal alignment analysis. In: International Conference of the Learning Sciences, pp. 104–111 (2018)Google Scholar
  29. 29.
    Holstein, K., McLaren, B.M., Aleven, V.: Student learning benefits of a mixed-reality teacher awareness tool in AI-enhanced classrooms. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 154–168. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93843-1_12Google Scholar
  30. 30.
    Holstein, K., McLaren, B.M., Aleven, V.: Co-designing a real-time classroom orchestration tool to support teacher-AI complementarity. J. Learn. Anal. (Under review)Google Scholar
  31. 31.
    Kai, S., Almeda, M.V., Baker, R.S., Heffernan, C., Heffernan, N.: Decision tree modeling of wheel-spinning and productive persistence in skill builders. JEDM—J. Educ. Data Min. 10(1), 36–71 (2018)Google Scholar
  32. 32.
    Kulik, J.A., Fletcher, J.: Effectiveness of intelligent tutoring systems: a meta-analytic review. Rev. Educ. Res. 86(1), 42–78 (2016)Google Scholar
  33. 33.
    Lee, M.K., Baykal, S.: Algorithmic mediation in group decisions: fairness perceptions of algorithmically mediated vs. discussion-based social division. In: CSCW, pp. 1035–1048 (2017)Google Scholar
  34. 34.
    van Leeuwen, A., et al.: Orchestration tools for teachers in the context of individual and collaborative learning: what information do teachers need and what do they do with it? In: International Society of the Learning Sciences, Inc.[ISLS] (2018)Google Scholar
  35. 35.
    Long, Y., Aman, Z., Aleven, V.: Motivational design in an intelligent tutoring system that helps students make good task selection decisions. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.F. (eds.) AIED 2015. LNCS (LNAI), vol. 9112, pp. 226–236. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19773-9_23Google Scholar
  36. 36.
    Luckin, R., Clark, W.: More than a game: the participatory design of contextualised technology-rich learning experiences with the ecology of resources. J. e-Learn. Knowl. Soc. 7(3), 33–50 (2011)Google Scholar
  37. 37.
    Ma, W., Adesope, O.O., Nesbit, J.C., Liu, Q.: Intelligent tutoring systems and learning outcomes: a meta-analysis. J. Educ. Psychol. 106(4), 901 (2014)Google Scholar
  38. 38.
    Miller, J.K., Friedman, B., Jancke, G., Gill, B.: Value tensions in design: the value sensitive design, development, and appropriation of a corporation’s groupware system. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, pp. 281–290. ACM (2007)Google Scholar
  39. 39.
    Mitchell, V., Ross, T., May, A., Sims, R., Parker, C.: Empirical investigation of the impact of using co-design methods when generating proposals for sustainable travel solutions. CoDesign 12(4), 205–220 (2016)Google Scholar
  40. 40.
    Muller, M.J., Kuhn, S.: Participatory design. Commun. ACM 36(6), 24–28 (1993)Google Scholar
  41. 41.
    Mulligan, D.K., King, J.: Bridging the gap between privacy and design. U. Pa. J. Const. L. 14, 989 (2011)Google Scholar
  42. 42.
    Odom, W., Zimmerman, J., Davidoff, S., Forlizzi, J., Dey, A.K., Lee, M.K.: A fieldwork of the future with user enactments. In: Proceedings of the Designing Interactive Systems Conference, pp. 338–347. ACM (2012)Google Scholar
  43. 43.
    Olsen, J.: Orchestrating Combined Collaborative and Individual Learning in the Classroom. Ph.D. thesis, Carnegie Mellon University (2017)Google Scholar
  44. 44.
    Pane, J.F.: Informing progress: insights on personalized learning implementation and effects. RAND (2017)Google Scholar
  45. 45.
    Prieto, L.P., Holenko Dlab, M., Gutiérrez, I., Abdulwahed, M., Balid, W.: Orchestrating technology enhanced learning: a literature review and a conceptual framework. Int. J. Technol. Enhanced Learn. 3(6), 583–598 (2011)Google Scholar
  46. 46.
    Prieto Santos, L.P., et al.: Supporting orchestration of blended CSCL scenarios in distributed learning environments (2012)Google Scholar
  47. 47.
    Ritter, S., Yudelson, M., Fancsali, S.E., Berman, S.R.: How mastery learning works at scale. In: Proceedings of the Third (2016) ACM Conference on Learning@ Scale, pp. 71–79. ACM (2016)Google Scholar
  48. 48.
    Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.: Cognitive tutor: applied research in mathematics education. Psychon. Bull. Rev. 14(2), 249–255 (2007)Google Scholar
  49. 49.
    Ritter, S., Yudelson, M., Fancsali, S., Berman, S.R.: Towards integrating human and automated tutoring systems. In: EDM, pp. 626–627 (2016)Google Scholar
  50. 50.
    Rodriguez Triana, M.J., et al.: Monitoring, awareness and reflection in blended technology enhanced learning: a systematic review. Int. J. Technol. Enhanced Learn. 9, 126–150 (2017)Google Scholar
  51. 51.
    Roll, I., Aleven, V., McLaren, B.M., Koedinger, K.R.: Improving students’ help-seeking skills using metacognitive feedback in an intelligent tutoring system. Learn. Instr. 21(2), 267–280 (2011)Google Scholar
  52. 52.
    Schofield, J.W.: Psychology: computers and classroom social processes-a review of the literature. Soc. Sci. Comput. Rev. 15(1), 27–39 (1997)Google Scholar
  53. 53.
    Schofield, J.W., Eurich-Fulcer, R., Britt, C.L.: Teachers, computer tutors, and teaching: the artificially intelligent tutor as an agent for classroom change. Am. Educ. Res. J. 31(3), 579–607 (1994)Google Scholar
  54. 54.
    Sharples, M.: Shared orchestration within and beyond the classroom. Comput. Educ. 69, 504–506 (2013)Google Scholar
  55. 55.
    Sheridan, T.B.: Function allocation: algorithm, alchemy or apostasy? Int. J. Hum.-Comput. Stud. 52(2), 203–216 (2000)Google Scholar
  56. 56.
    Trischler, J., Pervan, S.J., Kelly, S.J., Scott, D.R.: The value of codesign: the effect of customer involvement in service design teams. J. Serv. Res. 21(1), 75–100 (2018)Google Scholar
  57. 57.
    Walker, E., Rummel, N., Koedinger, K.R.: Adaptive intelligent support to improve peer tutoring in algebra. Int. J. Artif. Intell. Educ. 24(1), 33–61 (2014)Google Scholar
  58. 58.
    Walonoski, J.A., Heffernan, N.T.: Prevention of off-task gaming behavior in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 722–724. Springer, Heidelberg (2006).  https://doi.org/10.1007/11774303_80Google Scholar
  59. 59.
    Watters, A.: The Monsters of Education Technology. Smashwords Edition (2014)Google Scholar
  60. 60.
    Wetzel, J., et al.: A preliminary evaluation of the usability of an AI-infused orchestration system. In: Penstein Rosé, C., et al. (eds.) AIED 2018. LNCS (LNAI), vol. 10948, pp. 379–383. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93846-2_71Google Scholar
  61. 61.
    Williamson, B.: Calculating children in the dataveillance school: personal and learning analytics. In: Surveillance Futures, pp. 62–90. Routledge, London (2016)Google Scholar
  62. 62.
    Williamson, B.: Decoding classdojo: psycho-policy, social-emotional learning and persuasive educational technologies. Learn. Media Technol. 42(4), 440–453 (2017)Google Scholar
  63. 63.
    Wong, R.Y., Mulligan, D.K., Van Wyk, E., Pierce, J., Chuang, J.: Eliciting values reflections by engaging privacy futures using design workbooks (2017)Google Scholar
  64. 64.
    Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., Picard, R.: Affect-aware tutors: recognising and responding to student affect. Int. J. Learn. Technol. 4(3–4), 129–164 (2009)Google Scholar
  65. 65.
    Yacef, K.: Intelligent teaching assistant systems. In: 2002 Proceedings of International Conference on Computers in Education, pp. 136–140. IEEE (2002)Google Scholar
  66. 66.
    Zhu, H., Yu, B., Halfaker, A., Terveen, L.: Value-sensitive algorithm design: method, case study, and lessons. Proc. ACM Hum. Comput. Interact. 2(CSCW), 194:1–194:23 (2018).  https://doi.org/10.1145/3274463, http://doi.acm.org/10.1145/3274463Google Scholar
  67. 67.
    Zimmerman, J., Forlizzi, J.: Speed dating: providing a menu of possible futures. She Ji: J. Des. Econ. Innov. 3(1), 30–50 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth Holstein
    • 1
    Email author
  • Bruce M. McLaren
    • 1
  • Vincent Aleven
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations