Advertisement

Mining Social Networks from Linked Open Data

  • Raji GhawiEmail author
  • Jürgen Pfeffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11530)

Abstract

The richness and openness of Linked Open Data (LOD) make them invaluable resources of information, and create new opportunities for many areas of application. In this paper, we address the exploitation of LOD by utilizing SPARQL queries in order to extract social networks of entities. This enables the application of techniques from Social Network Analysis to study social interactions among entities, providing deep insights into their latent social structure.

Keywords

LOD SNA RDF SPARQL algebra Extraction patterns 

References

  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  2. 2.
    Erétéo, G., Buffa, M., Gandon, F., Corby, O.: Analysis of a real online social network using semantic web frameworks. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 180–195. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04930-9_12CrossRefGoogle Scholar
  3. 3.
    Erétéo, G., Gandon, F., Corby, O., Buffa, M.: Semantic social network analysis. CoRR abs/0904.3701 (2009)Google Scholar
  4. 4.
    Ghawi, R., Schönfeld, M., Pfeffer, J.: Towards semantic-based social network analysis. In: 14th International IEEE Conference on Signal-Image Technologies and Internet-Based Systems (SITIS 2018). IEEE, November 2018Google Scholar
  5. 5.
    Groth, P.T., Gil, Y.: Linked data for network science. In: LISC. CEUR Workshop Proceedings, vol. 783. CEUR-WS.org (2011)Google Scholar
  6. 6.
    Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (2013)Google Scholar
  7. 7.
    Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks: A Guide to Empirical Research. Campus Verlag, Frankfurt (2012)Google Scholar
  8. 8.
    Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Semantics and expressive power of subqueries and aggregates in SPARQL 1.1. In: Proceedings of the 25th International Conference on World Wide Web, Geneva, Switzerland, pp. 227–238 (2016)Google Scholar
  9. 9.
    Kaminski, M., Kostylev, E.V., Grau, B.C.: Query nesting, assignment, and aggregation in SPARQL 1.1. ACM Trans. Database Syst. 42(3), 17:1–17:46 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mika, P.: Flink: semantic web technology for the extraction and analysis of social networks. Web Semant. 3(2–3), 211–223 (2005)CrossRefGoogle Scholar
  11. 11.
    San Martín, M., Gutierrez, C.: Representing, querying and transforming social networks with RDF/SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 293–307. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02121-3_24CrossRefGoogle Scholar
  12. 12.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, 1st edn. Cambridge University Press, New York (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bavarian School of Public PolicyTechnical University of MunichMunichGermany

Personalised recommendations